Matematicas1
iyol1510 de Julio de 2013
4.283 Palabras (18 Páginas)314 Visitas
OBJETIVOS GENERALES
Desarrollar habilidades en el manejo de expresiones algebraicas, planteo de ecuaciones y cálculo de matrices, que permitan al alumno resolver problemas de mezclas, costos, producción y consumo, similares a los que viven las empresas de la región.
A) OBJETIVOS PARTICULARES DEL APRENDIZAJE
UNIDAD 1. EL LENGUAJE DE LAS MATEMATICAS
Para aprender Matemáticas hace falta conocer su idioma, sus palabras clave, los objetos que se
Utilizan, las herramientas necesarias para manejar esos objetos…
• El idioma que utiliza es formal y abstracto. Mezcla palabras, números, símbolos, figuras y
conceptos que tienen un “significado matemático”, que no siempre coincide con el significado en
el lenguaje normal, castellano o de cualquier otro idioma.
• La Matemática es una ciencia lógica y deductiva. La deducción lógica exige cumplir unas reglas
muy precisas: “si no se cumplen, no funciona”. (Ejemplo de móviles y ordenadores.)
• Parte de unos principios (axiomas); de unas definiciones y conceptos; de unos objetos (números,
símbolos, operadores…); de unas “reglas de juego” (propiedades); …
• Las reglas de juego hay que aprenderlas, memorizarlas y usarlas. (Esto significa que hay que
estudiarlas.)
• Las herramientas que se utilizan son los conceptos, las operaciones, las propiedades…
• Utilizando esas herramientas se genera un método, una teoría.
• Los resultados deben ser demostrados; no basta con una simple comprobación. Una vez
demostrados pueden aplicarse como un molde.
1.1.COMPRENDER LA NATURALEZA ABSTRACTA DE LAS MATEMÁTICAS
Las matemáticas dependen tanto de la lógica como de la creatividad, y están regidas por diversos propósitos prácticos y por su interés intrínseco. Para algunas personas, y no sólo para los matemáticos profesionales, la esencia de esta disciplina se encuentra en su belleza y en su reto intelectual Para otros, incluidos muchos científicos e ingenieros, su valor principal estriba en la forma en que se aplican a su propio trabajo. Ya que las matemáticas juegan ese papel central en la cultura moderna, es indispensable una comprensión básica de ellas en la formación científica. Para lograr esto, los estudiantes deben percatarse de que las matemáticas forman parte del quehacer científico, comprender la naturaleza del pensamiento matemático y familiarizarse con las ideas y habilidades de esta disciplina.
MATEMÁTICAS, CIENCIA Y TECNOLOGÍA
Debido a su abstracción, las matemáticas son universales en un sentido en que no lo son otros campos del pensamiento humano. Tienen aplicaciones útiles en los negocios, la industria, la música, la historia, la política, los deportes, la medicina, la agricultura, la ingeniería y las ciencias naturales y sociales. Es muy amplia la relación entre las matemáticas y los otros campos de la ciencia básica y aplicada. Ello obedece a varias razones, incluidas las siguientes:
• La relación entre la ciencia y las matemáticas tiene una larga historia, que data de muchos siglos. La ciencia le ofrece a las matemáticas problemas interesantes para investigar, y éstas le brindan a aquélla herramientas poderosas para el análisis de datos. Con frecuencia, los modelos abstractos que han sido estudiados por los matemáticos, por el puro interés que despiertan han resultado ser muy útiles para la ciencia tiempo después. La ciencia y las matemáticas están tratando de descubrir pautas y relaciones generales, y en este caso ambas son parte del mismo quehacer.
• Las matemáticas son el principal lenguaje de la ciencia. El lenguaje simbólico matemático ha resultado ser en extremo valioso para expresar las ideas científicas sin ambigüedad. La declaración a = F/m no es sólo una manera abreviada de decir que la aceleración de un objeto depende de la fuerza que se le aplique y de su masa; sino que es un enunciado preciso de la relación cuantitativa entre esas variables. Más importante aún, las matemáticas proporcionan la gramática de la ciencia las reglas para el análisis riguroso de ideas científicas y datos.
• Las matemáticas y la ciencia tienen muchas características en común. Estas incluyen la creencia en un orden comprensible; una interacción de imaginación y lógica rigurosa; ideales de honestidad y franqueza; la importancia decisiva de la crítica de los compañeros; el valor atribuido a ser el primero en hacer un descubrimiento clave; abarcar el ámbito internacional; e incluso, con el desarrollo de poderosas computadoras electrónicas, ser capaz de utilizar la tecnología para abrir nuevos campos de investigación.
• Las matemáticas y la tecnología también han desarrollado una relación productiva mutua. Las matemáticas de las relaciones y cadenas lógicas, por ejemplo, han contribuido considerablemente al diseño del hardware computacional y a las técnicas de programación. Las matemáticas también ayudan de manera importante a la ingeniería, como en la descripción de sistemas complejos cuyo comportamiento puede ser simulado por la computadora. En tales simulaciones, pueden variarse las características del diseño y las condiciones de operación como un medio para encontrar diseños óptimos. Por su parte, la tecnología computacional ha abierto áreas totalmente nuevas en las matemáticas, aun en la misma naturaleza de la comprobación, y también continúa ayudando a resolver problemas anteriormente atemorizantes.
LA INVESTIGACIÓN MATEMÁTICA
El uso de las matemáticas para expresar ideas o resolver problemas comprende por lo menos tres fases: 1. representar de manera abstracta algunos aspectos de las cosas; 2. manejar las abstracciones mediante reglas de lógica para hallar nuevas relaciones entre ellas, y 3. ver si las nuevas relaciones indican algo útil sobre las cosas originales.
ABSTRACCIÓN Y REPRESENTACIÓN SIMBÓLICA
El pensamiento matemático comienza con frecuencia con el proceso de abstracción esto es, observar una similitud entre dos o más acontecimientos u objetos. Los aspectos que tienen en común, ya sea concretos o hipotéticos, se pueden representar por símbolos como los números, letras, otros signos, diagramas, construcciones geométricas o incluso palabras. Todos los números son abstracciones que representan el tamaño de conjuntos de cosas y sucesos, o el orden de los elementos en una serie. El círculo como concepto es una abstracción derivada de caras humanas, flores, ruedas, u olas pequeñas que se expanden; la letra A puede ser una abstracción para el área de objetos de cualquier forma, para la aceleración de todos los objetos móviles o para aquellos que tienen una propiedad específica; el símbolo + representa un proceso de adición, aun cuando uno se encuentre sumando manzanas o naranjas, horas o millas por hora. Y las abstracciones no se hacen sólo a partir de objetos o procesos concretos; también pueden realizarse con base en otras abstracciones, como las clases de números (los números pares, por ejemplo).
Tal abstracción permite a los matemáticos concentrarse en ciertas características de los objetos, además de que les evita la necesidad de guardar continuamente otras en su mente. En lo que a las matemáticas se refiere, no importa si un triángulo representa el área de un velero o la convergencia de dos líneas visuales sobre una estrella; los matemáticos pueden trabajar con ambos conceptos de igual manera. El ahorro de esfuerzo resultante es muy útil siempre y cuando al hacer la abstracción se ponga cuidado en no soslayar las características que juegan un papel importante en la determinación de los resultados de los sucesos que se están estudiando.
MANIPULACIÓN DE LOS ENUNCIADOS MATEMÁTICOS
Una vez que se han hecho las abstracciones y se han seleccionado las representaciones simbólicas de ellas, los símbolos se pueden combinar y recombinar de diversas maneras de acuerdo con reglas definidas con exactitud. En ocasiones, eso se lleva a cabo teniendo en mente un objetivo fijo; en otras, se hace en el contexto de un experimento o prueba para ver lo que sucede. A veces, una manipulación apropiada se puede identificar fácilmente a partir del significado intuitivo de las palabras y símbolos de que se compone; en otras ocasiones, una serie útil de manipulaciones se tiene que resolver por tanteo.
Es común que el conjunto de símbolos se combine en enunciados que expresan ideas o proposiciones. Por ejemplo, el símbolo A para el área de cualquier cuadrado se puede combinar con la letra s que representa la longitud del lado del cuadrado, para formar la expresión A = s2. Esta ecuación específica de qué manera se relaciona el área con el lado y también implica que no depende de nada más. Las reglas del álgebra común se pueden utilizar, entonces, para descubrir que si se duplica la longitud de los lados de un cuadrado, el área de éste se cuadruplica. En sí, este conocimiento hace posible que se descubra lo que le sucede al área de un cuadrado sin importar cuánto varíe la longitud de sus lados y, por el contrario, cómo cualquier cambio en el área afecta a los lados.
El discernimiento matemático en las relaciones abstractas ha aumentado a lo largo de miles de años y todavía sigue ampliándose y en ocasiones se revisa. Aunque las matemáticas comenzaron en la experiencia concreta de contar y medir, han evolucionado a través de muchas etapas de abstracción y ahora dependen mucho más de la lógica interna que de la demostración mecánica. Entonces, en cierto sentido, la manipulación de las abstracciones es casi un juego: comenzar con algunas reglas básicas, después
...