Mecánica Cuantica
situationgtl2 de Septiembre de 2014
4.175 Palabras (17 Páginas)204 Visitas
Cronología de la Mecánica Cuántica
Resulta cuando menos paradójico, como veremos a continuación, el hecho de que el electrón y el neutro fueran descubiertos en 1987 y 1932 respectivamente y que l a que probablemente es una de las disciplinas ligadas a ellos, la Mecánica Cuántica, comenzase su desarrollo allá por 1859.
En las siguientes páginas iremos tratando punto a punto las claves de esta disciplina científica y las historias de sus más grandes contribuyentes. Iremos desde el problema de la radiación del cuerpo negro planteado por Kirchoff hasta la firme consecución matemática de la teoría.
En 1859, Gustav Kirchoff publico unas teorías sobre la radiación del cuerpo negro en las cuales relacionaba la energía irradiada con la temperatura y la frecuencia de la energía emitida. Esto quedaba probado pero él fue incapaz de encontrar esa relación y la función de esa energía irradiada toma la forma de E = J(T,ν) siendo J una función respecto a la temperatura y el tiempo que era desconocida.
A partir de entonces fueron múltiples los intentos en descubrir la forma de dicha función J. Uno de los primeros intentos con algo de éxito fue protagonizado por Josef Stefan, el cual de forma experimental, concluye que la energía emitida se relacionaba con la potencia cuarta de la temperatura. A esta misma conclusión llego de forma teórica Ludwig Boltzmann, aplicando la termodinámica y los principios electromagnéticos de Maxwell. Estas conclusiones eran buenas pero no respondían al problema de longitudes de onda específicas, así pues, no estaban completas.
En 1896, Wilhelm Wien propuso una teoría que encajaba perfectamente para valores bajos de la longitud de onda pero fallaba mas allá del infrarrojo como probaron Rubens y Kurlbaum.
No fue hasta 4 años mas tarde cuando Planck fue visitado por Rubens que le enseño sus estudios. Poco tiempo después Planck había desarrollado la parte matemática del problema y había descrito con gran exactitud lo que debía ser la función J. Pero esto no contento a Planck, de manera
teórica sus resultados y dicha función J solo se explicaban de una forma, la energía era emitida en cantidades indistinguibles llamadas cuantos.
Max Planck: Radiación del cuerpo negro; el Cuanto
Max Planck (1858-1947), alemán, físico, nació en una familia con bastante nivel académico, poco corriente para la época. Su padre, Julius Wilhem Planck, era profesor de derecho constitucional en la universidad de Kiel, y su abuelo y bisabuelo habían sido, en su día, profesores de teología en Göttingen. Su madre, Emma Patzig era la segunda esposa de su padre. Era el sexto hijo de su padre, y el cuarto de su actual mujer, y creció en un ambiente en el que la escolarización, honestidad y generosidad eran valores muy importantes a tener en cuenta. Max empezó su escolarización elemental en Kiel, pero en 1867 su familia se mudó a Munich, donde su padre iba a ser profesor. Recibió la enseñaza secundaria también en Munich, era buen estudiante, pero no era brillante, sino que estaba normalmente entre el 3º y el 8º de su clase. Música era quizás la asignatura que mejor se le daba. Se habría esperado que despuntase en matemáticas y ciencias, pero ciertamente, en sus primeros años académicos, aunque lo hacía bien, no había signos de talento extraordinario. Sin embargo, su profesor Hermann Müller, elevó su nivel de interés por la física y las matemáticas hasta tal nivel que se quedó muy impresionado con la ley de la conservación de la energía.
- 8 -
ntró en la universidad de Munich en 1874. Después de recibir mayoritariamente
clases
urante los años de universidad tuvo la oportunidad de conocer a múltiples
celebrid
n 1888, tras la muerte de Kirchoff, Planck ocupo su lugar en la universidad de Berlín avalada por su adquirido prestigio como físico y sus visiones originales de la ciencia en
E de matemáticas al principio de su carrera, mostró interés por los trabajos de investigación que llevaba a cabo su profesor de física, Philipp von Jolly, quien le dijo que la física era esencialmente una ciencia completa con pocas posibilidades de desarrollo en el futuro. A pesar de estas palabras, Planck decidió estudiar físicas.
D ades de la física en aquel momento, entre ellas a Kirchoff, hacia el cual sentía una gran admiración pero que le parecía seco y monótono en su forma de impartir clases. A pesar de esto Planck mostraba un gran interés fuera de los propios limites de la carrera y quedo fascinado de nuevo por otra ley de carácter universal, la segunda ley de la termodinámica, sobre la cual realizaría su tesis doctoral por la cual recibió el doctorado en Munich en 1879 a la edad de 21 años. Dicha tesis obtuvo la calificación de "summa cum laude''.
E
- 9 -
general
formula hoy en día conocida como la formula de radiación de Planck. En dos meses Planck hizo un completo estudio teórico-ético en el cual introdu
a justificar el espectro de emisión de un cuerpo negro, enunció su hipótes según la cual el contenido energético de un oscilador puede ser sólo un múltiplo entero de la mag
opagarse por el espacio sin medio material alguno y que se presenta bajo distintos aspectos -ondas electromagnéticas, rayos infrarro
n brillantes como, por ejemplo, el cálculo de la temperatura de la superficie solar a partir de las leyes de Stefan-Boltzmann y Wien
. Mientras tanto continuó su estudio de la termodinámica y la emisión de energía en función de la longitud de onda de la misma.
Esto le llevaría en 1900 a publicar una
cía un concepto rompedor con la física conocida hasta aquel instante, el cuanto de energía. A finales de dicho año Planck expuso sus teorías públicamente con el tema del cuanto como mayor fuente de controversia y la aceptación del carácter estadístico de las leyes físicas interpretado por Boltzmann.
En 1900, Max Planck, par is nitud hν, a la que se denomina cuanto de energía, y en donde f es la frecuencia de su vibración y h la constante de Planck igual a 6,62 · 10-34 Js. En realidad, los cuantos o unidades de radiación son tan pequeños que la radiación nos parece continua.
El estudio de la radiación, o forma de energía que puede pr
jos, luz visible, rayos ultravioleta, rayos X, rayos gamma-, llevó a la postulación de una serie de hipótesis y leyes basadas en la física clásica. Tales interpretaciones partieron del estudio de la radiación en un cuerpo negro que, al absorber toda radiación incidente sin reflejar ninguna y emitir, pues, el máximo de energía, se podía considerar como radiador ideal.
Estos estudios y medidas condujeron en algunos casos a resultados ta
, como hemos mencionado anteriormente. Sin embargo, no consiguieron una expresión matemática universal del problema, es decir, no permitieron conocer la composición del espectro integrado por todas las longitudes de onda en que se puede descomponer la radiación, en función de la temperatura. Ello planteó la necesidad de cambiar la base del razonamiento. No obstante, dado que los postulados clásicos de la física en los que se basaron los estudios habían dado lugar a grandes éxitos científicos, los investigadores se encontraron perplejos ante el conflicto entre teoría y resultados experimentales. Fue Planck el primero en pensar que la clave del problema podía estribar en la discontinuidad de la energía radiante.
Números cuánticos
- 10 -
a aplicación de la hipótesis de Planck al modelo atómico establecido con anterioridad por
Niels B
in embargo, estos modelos compatibilizaban la cuantización del átomo con la mecánica
clásica
eoría del quantum de acción de Planck
Al buscar una solución que fuera válida para todos los casos, Max Planck enunció su
fórmul
o dándose por satisfecho con una mera fórmula que no respondiera a la realidad física,
Planck
valor es de 6,62 · 10-27 ergios por segundo).
L ohr permitió explicar que la emisión de la energía radiante por un electrón se debe al salto de éste de una órbita a otra puesto que cada una de ellas queda determinada por un nivel energético, y que sólo eran posibles aquellas órbitas en las cuales el momento cinético del electrón era un múltiplo entero de un número h denominado cuántico principal, relacionado a su vez con la constante de Planck h. El alemán Arnold Sommerfeld modificó esta teoría e introdujo otro número cuántico, el secundario u orbital l, para hacer la órbita elíptica. Con posterioridad se instauró un tercero, el número cuántico magnético m, que indica la inclinación de la órbita. Finalmente se estableció el número cuántico de espín s, que determinaba el sentido de giro del electrón. La ordenación de los valores que podían adoptar estos números dio lugar a una distribución de niveles y subniveles energéticos a partir de la cual pudo establecerse la estructura electrónica de los átomos y, consiguientemente, el sistema periódico de los elementos.
S y se hacía así sentir la necesidad de una nueva base para la teoría cuántica, base que fue proporcionada por la interpretación física conocida como mecánica cuántica.
T
a matemática, sin pronunciarse sobre la naturaleza de los fenómenos. Tal fórmula permitió fijar el poder de emisión del cuerpo negro en función de la longitud de onda y en ella se relacionaban la constante de Planck, la velocidad de la luz, la constante de Boltzmann y la temperatura absoluta.
N
...