ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Potencia Fluida


Enviado por   •  10 de Septiembre de 2014  •  3.269 Palabras (14 Páginas)  •  260 Visitas

Página 1 de 14

1. INTRODUCTION

Hydraulics is a topic in applied science and engineering dealing with the mechanical properties of liquids. At a very basic level hydraulics is the liquid version of pneumatics. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on the engineering uses of fluid properties. In fluid power, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some part of science and most of engineering modules, and cover concepts such as pipe flow, dam design, fluidics and fluid control circuitry, pumps, turbines,hydropower, computational fluid dynamics, flow measurement, river channel behavior and erosion.

Ancient and medieval era

Early uses of water power date back to Mesopotamia and ancient Egypt, where irrigation has been used since the 6th millennium BC and water clocks had been used since the early 2nd millennium BC. Other early examples of water power include the Qanat system in ancient Persia and the Turpan water system in ancient China.

Greek / Hellenistic age

The Greeks constructed sophisticated water and hydraulic power systems. An example is the construction by Eupalinos, under a public contract, of a watering channel for Samos, the Tunnel of Eupalinos. An early example of the usage of hydraulic wheel, probably the earliest in Europe, is the Perachora wheel (3rd century BC).[2]

Notable is the construction of the first hydraulic automata by Ctesibius (flourished c. 270 BC) and Hero of Alexandria (c. 10 – 80 AD). Hero describes a number of working machines using hydraulic power, such as the force pump, which is known from many Roman sites as having been used for raising water and in fire engines.

China

In ancient China there was Sunshu Ao (6th century BC), Ximen Bao (5th century BC), Du Shi (circa 31 AD), Zhang Heng (78 - 139 AD), and Ma Jun (200 - 265 AD), while medieval China had Su Song (1020 - 1101 AD) and Shen Kuo (1031–1095). Du Shi employed a waterwheel to power the bellows of a blast furnace producing cast iron. Zhang Heng was the first to employ hydraulics to provide motive power in rotating an armillary sphere for astronomical observation.

Sri Lanka

In ancient Sri Lanka, hydraulics were widely used in the ancient kingdoms of Anuradhapura and Polonnaruwa.[3] The discovery of the principle of the valve tower, or valve pit, for regulating the escape of water is credited to ingenuity more than 2,000 years ago.[4] By the first century AD, several large-scale irrigation works had been completed.[5] Macro- and micro-hydraulics to provide for domestic horticultural and agricultural needs, surface drainage and erosion control, ornamental and recreational water courses and retaining structures and also cooling systems were in place in Sigiriya, Sri Lanka. The coral on the massive rock at the site includes cisterns for collecting water.

Innovations in Ancient Rome

In Ancient Rome many different hydraulic applications were developed, including public water supplies, innumerable aqueducts, power using watermills and hydraulic mining. They were among the first to make use of the siphon to carry water across valleys, and usedhushing on a large scale to prospect for and then extract metal ores. They used lead widely in plumbing systems for domestic and public supply, such as feeding thermae.

Hydraulic mining was used in the gold-fields of northern Spain, which was conquered by Augustus in 25 BC. The alluvial gold-mine ofLas Medulas was one of the largest of their mines. It was worked by at least 7 long aqueducts, and the water streams were used to erode the soft deposits, and then wash the tailings for the valuable gold content.

Modern era (c. 1600 – 1870)

Benedetto Castelli

In 1619 Benedetto Castelli (1576 - 1578–1643), a student of Galileo Galilei, published the book Della Misura dell'Acque Correnti or "On the Measurement of Running Waters", one of the foundations of modern hydrodynamics. He served as a chief consultant to the Pope on hydraulic projects, i.e., management of rivers in the Papal States, beginning in 1626.[6]

Blaise Pascal

Blaise Pascal (1623–1662) studied fluid hydrodynamics and hydrostatics, centered on the principles of hydraulic fluids. His inventions include the hydraulic press, which multiplied a smaller force acting on a smaller area into the application of a larger force totaled over a larger area, transmitted through the same pressure (or same change of pressure) at both locations. Pascal's law or principle states that for an incompressible fluid at rest, the difference in pressure is proportional to the difference in height and this difference remains the same whether or not the overall pressure of the fluid is changed by applying an external force. This implies that by increasing the pressure at any point in a confined fluid, there is an equal increase at every other point in the container, i.e., any change in pressure applied at any point of the fluid is transmitted undiminished throughout the fluids.

Jean Louis Marie Poiseuille

A French physician, Poiseuille researched the flow of blood through the body and discovered an important law governing the rate of flow with the diameter of the tube in which flow occurred.

2. Hydraulics

Hydraulic drills are a type of heavy equipment that can be used in a number of different construction, excavation, and drilling operations. Designed to bore through just about any type of substance, the hydraulic drill is commonly used in various types of excavating projects as well as drilling for oil or natural gas, or even as part of the process of scientific research of the earth. While drills of this type can be utilized in several different situations, the basic design remains the same.

There are actually two different types of these drills. One is the manual or hand-held hydraulic drill. This design makes it relatively simple to drill into the earth and collect soil samples. The samples can be used for geological analysis, or even for soil analysis before planting crops. These simple drills usually are equipped with an electric motor, a simple pump, and a tank to collect the samples.

An industrial hydraulic drill is usually mounted on some type of heavy machinery. Cranes may include a drill of this type when the idea is to loosen large amounts of soil for excavation. A hydraulic drill may be mounted onto the framing of an oil rig, making

...

Descargar como (para miembros actualizados)  txt (20.5 Kb)  
Leer 13 páginas más »
Disponible sólo en Clubensayos.com