ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Propiedades Del Campo Magnético


Enviado por   •  8 de Diciembre de 2013  •  Tutoriales  •  5.155 Palabras (21 Páginas)  •  527 Visitas

Página 1 de 21

Índice

Introducción ---------------------------------------------------------------------------------- 04

Campo magnético --------------------------------------------------------------------------- 05

Naturaleza del magnetismo ---------------------------------------------------------------- 05

Campo magnético de un imán ------------------------------------------------------------- 06

Campo magnético de una corriente ------------------------------------------------------- 06

Líneas de Campo magnético. -------------------------------------------------------------- 06

Fuerza de Lorentz --------------------------------------------------------------------------- 07

Historia --------------------------------------------------------------------------------------- 07

Nombre -------------------------------------------------------------------------------------- 08

Uso -------------------------------------------------------------------------------------------- 08

Propiedades Del Campo Magnético ------------------------------------------------------ 09

Fuentes del campo magnético ------------------------------------------------------------- 12

Campo magnético producido por una carga puntual ----------------------------------- 12

Campo magnético producido por una distribución de cargas ------------------------- 13

Inexistencia de cargas magnéticas aisladas ---------------------------------------------- 13

Energía almacenada en campos magnéticos --------------------------------------------- 14

Determinación del campo de inducción magnética B ---------------------------------- 15

Campo magnético en relatividad, Campo medido por dos observadores ------------ 17

Campo creado por una carga en movimiento -------------------------------------------- 17

Unidades y magnitudes típicas ------------------------------------------------------------ 18

Conclusión ----------------------------------------------------------------------------------- 19

Introducción

El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que enlaza ambas fuerzas, es el tema de este curso, se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.

Campo magnético

El magnetismo está muy relacionado con la electricidad. El Electromagnetismo es la parte de la Física que estudia la relación entre corrientes eléctricas y campos magnéticos. Una carga eléctrica crea a su alrededor un campo eléctrico. El movimiento de la carga eléctrica produce un campo magnético. Toda carga eléctrica que se mueve en el entorno de un campo magnético experimenta una fuerza. Dos cargas eléctricas móviles, no sólo están sometidas a las fuerzas electrostáticas que se ejercen mutuamente debidas a su carga, sino que además entre ellas actúan otras fuerzas electromagnéticas que dependen de los valores de las cargas y de las velocidades de éstas.

Naturaleza del magnetismo

Desde la antigüedad se sabe que ciertos minerales de hierro (magnetita) poseen la propiedad, denominada magnetismo, de atraer otros metales como el hierro, el acero, el cobalto y el níquel. Se dice que tales minerales están imantados.

La magnetita es un imán natural. Los imanes construidos por el hombre se llaman imanes artificiales.

En principio se creyó que los fenómenos magnéticos no tenían relación con los fenómenos eléctricos. Sin embargo, a comienzos del siglo XIX, el físico danés Hans Christian Oersted (1777-1851) observó que un conductor por el que circula una corriente ejerce una fuerza sobre un imán colocado en sus proximidades. Experimentos subsiguientes realizados por Andre Marie Ampère y otros físicos demostraron que las corrientes eléctricas atraen trocitos o limaduras de Hierro y que corrientes paralelas se atraen entre sí.

Ampère propuso la teoría de que las corrientes eléctricas son las fuentes de todos los fenómenos magnéticos. El modelo de Ampere es la base de la teoría moderna del magnetismo.

Posteriormente fueron estudiadas otras conexiones que existen entre el magnetismo y la electricidad realizada por Michael Faraday y Joseph Henry, que demostraron que un campo magnético variable produce un campo eléctrico no conservativo y mediante la teoría de Maxwell que demostró que un campo eléctrico variable produce un campo magnético.

En la actualidad, se sabe que cualquier fenómeno de atracción o repulsión magnética no es otra cosa que una fuerza de acción a distancia ejercida por una carga en movimiento sobre otra carga que también se encuentra en movimiento. Por ello, una corriente eléctrica al ser una carga en movimiento, ejerce una acción magnética sobre cualquier otra carga en movimiento.

Para explicar el comportamiento magnético de los imanes, se considera que los electrones son cargas eléctricas en movimiento, es lógico esperar que cada uno de ellos por separado sea capaz de producir fenómenos magnéticos. En la mayor parte de las sustancias no se manifiestan, ya que, por estar los átomos orientados aleatoriamente, las acciones de sus electrones se anulan entre sí. Sin embargo en los materiales magnéticos, los átomos poseen una orientación tal que las acciones de sus electrones se suman unas a otras, presentándose la posibilidad de manifestarse magnéticamente.

Campo magnético de un imán

Un imán puede girar libremente en un plano horizontal y se orienta aproximadamente en la dirección Norte-Sur geográfica. En consecuencias, si un imán en las condiciones citadas se coloca en una determinada región del espacio y cambia de posición, orientándose en otra dirección, esto indica que sobre el imán actúa una fuerza y por consiguiente se ha realizado una interacción. Se dice entonces que en la región del espacio donde está situado el imán existe un campo magnético. La dirección del campo magnético es el eje longitudinal del imán y el sentido, el que va dirigido del polo Sur(S) al polo Norte (N).

En el espacio que rodea a un imán existe un campo magnético, que es originado por el movimiento de los electrones alrededor de los núcleos de los átomos y por un movimiento rotatorio de los electrones sobre sí mismos que recibe el nombre de spin

Campo magnético de una corriente

Experimento de Oersted

La conexión entre la electricidad y magnetismo no se conoció sino hasta el siglo XIX, cuando Hans Christian Oersted descubrió que una corriente eléctrica influye sobre la orientación de la aguja de una brújula. Oersted comprobó en 1820 la estrecha vinculación que existe entre magnetismo y corriente eléctrica. Colocó por encima de una brújula (aguja imantada) y paralelamente a ella un alambre recto cuyos extremos van conectados a una fuente de corriente continua.

Si en el circuito se intercala un interruptor S se observa que mientras el circuito está abierto no hay movimiento definido de cargas eléctricas en el alambre, por lo que el campo magnético no existe y la aguja imantada mantiene su posición original. Cuando se cierra el circuito, hay un movimiento definido de cargas eléctricas en el alambre y se origina un campo magnético a su alrededor.

Si por un conductor circula una corriente eléctrica (cargas en movimiento) en el espacio que rodea al conductor se origina un campo magnético.

Líneas de Campo magnético.

Para representar y describir un campo magnético se utilizan línea de campo magnético o líneas de inducción. Al igual que los campos eléctricos, los campos magnéticos se pueden materializar mediante líneas de fuerzas, que pueden presentar distintas formas, según sea el agente creador, del campo. Distintas formas presentan las líneas de fuerza del campo magnético creado por una corriente, según que el conductor sea rectilíneo, circular o en forma de bobina.

Cuando se trata del campo magnético creado por un imán las líneas de fuerzas salen de una zona del mismo denominado polo norte y vuelven a otra zona que recibe el nombre de polo sur y es en las proximidades de estos polos donde más apretada se encuentran las líneas de fuerzas y, como consecuencias, donde con mayor intensidad se manifiestan los fenómenos magnéticos.

Del mismo modo que en un campo eléctrico, y por análogas razones, las líneas de fuerzas de un campo magnético son líneas continuas que no se cortan entre sí.

Fuerza de Lorentz

Entre las definiciones de campo magnético se encuentra la dada por la fuerza de Lorentz. Esto sería el efecto generado por una corriente eléctrica o un imán, sobre una región del espacio en la que una carga eléctrica puntual de valor (q), que se desplaza a una velocidad , experimenta los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad (v) como al campo (B). Así, dicha carga percibirá una fuerza descrita con la siguiente ecuación.

Donde F es la fuerza magnética, v es la velocidad y B el campo magnético, también llamado inducción magnética y densidad de flujo magnético. (Nótese que tanto F como v y B son magnitudes vectoriales y el producto vectorial tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será:

La existencia de un campo magnético se pone de relieve gracias a la propiedad (la cual la podemos localizar en el espacio) de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre puede ser considerada un magnetómetro.

Historia

Si bien algunos materiales magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que la magnetita ejerce sobre el hierro, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó plasmada, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.

Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague, Dinamarca, Hans Christian Oersted. En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por una corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de brújula montada sobre una peana de madera.

Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja de la brújula. Se calló y finalizó las demostraciones, pero en los meses sucesivos trabajó duro intentando explicarse el nuevo fenómeno. ¡Pero no pudo! La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto. Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell.

Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad éste "reproduce" sus dos polos. Si ahora volvemos a partir otra vez en dos, nuevamente tendremos cada trozo con dos polos norte y sur diferenciados. En magnetismo no existen los monopolos magnéticos.

Nombre

El nombre de campo magnético o intensidad del campo magnético se aplica a dos magnitudes:

• La excitación magnética o campo H es la primera de ellas, desde el punto de vista histórico, y se representa con H.

• La inducción magnética o campo B, que en la actualidad se considera el auténtico campo magnético, y se representa con B.

Desde un punto de vista físico, ambos son equivalentes en el vacío, salvo en una constante de proporcionalidad (permeabilidad) que depende del sistema de unidades: 1 en el sistema de Gauss, en el SI. Solo se diferencian en medios materiales con el fenómeno de la magnetización.

Uso

El campo H se ha considerado tradicionalmente el campo principal o intensidad de campo magnético, ya que se puede relacionar con unas cargas, masas o polos magnéticos por medio de una ley similar a la de Coulomb para la electricidad. Maxwell, por ejemplo, utilizó este enfoque, aunque aclarando que esas cargas eran ficticias. Con ello, no solo se parte de leyes similares en los campos eléctricos y magnéticos (incluyendo la posibilidad de definir un potencial escalar magnético), sino que en medios materiales, con la equiparación matemática de H con E, por un lado, y de B con D, por otro, se pueden establecer paralelismos útiles en las condiciones de contorno y las relaciones termodinámicas; las fórmulas correspondientes en el sistema electromagnético de Gauss son:

En electrotecnia no es raro que se conserve este punto de vista porque resulta práctico.

Con la llegada de las teorías del electrón de Lorentz y Poincaré, y de la relatividad de Einstein, quedó claro que estos paralelismos no se corresponden con la realidad física de los fenómenos, por lo que hoy es frecuente, sobre todo en física, que el nombre de campo magnético se aplique a B (por ejemplo, en los textos de Alonso-Finn y de Feynman).1 En la formulación relativista del electromagnetismo, E no se agrupa con H para el tensor de intensidades, sino con B.

En 1944, F. Rasetti preparó un experimento para dilucidar cuál de los dos campos era el fundamental, es decir, aquel que actúa sobre una carga en movimiento, y el resultado fue que el campo magnético real era B y no H.2

Para caracterizar H y B se ha recurrido a varias distinciones. Así, H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. Otra distinción que se hace en ocasiones es que H se refiere al campo en función de sus fuentes (las corrientes eléctricas) y B al campo en función de sus efectos (fuerzas sobre las cargas).

Propiedades Del Campo Magnético

Para determinar completamente una función vectorial necesitamos calcular tanto su rotacional como su divergencia, además de las condiciones de contorno. Por ello las ecuaciones fundamentales del electromagnetismo (ecuaciones de Maxwell) se expresan en términos de la divergencia y el rotacional de los campos eléctrico y magnético.

Empezaremos calculando la divergencia del campo magnético a través de la ley de Biot -Savart:

El integrando de esta ecuación puede descomponerse según las reglas del cálculo vectorial en la forma :

Donde los dos términos dan un resultado nulo. Por lo tanto se obtiene:

Que constituye una de las leyes generales del Electromagnetismo que establece que el campo de inducción magnética es solenoidal, es decir tiene divergencia nula en todos los puntos.

Esto significa dicho campo no tiene ni fuentes ni sumideros y por tanto, como resaltaremos posteriormente, las líneas de fuerza del campo magnético siempre son cerradas. Los polos magnéticos, equivalentes en este caso a las cargas eléctricas, no existen independientemente; siempre que hay un polo Norte ha de aparecer un polo Sur.

Este resultado puede también expresarse en forma integral. A partir de la ecuación tendremos:

Donde la equivalencia se establece a través del teorema de Gauss para cualquier función de tipo vectorial. La anterior ecuación establece que el flujo del campo B a través de cualquier superficie cerrada es cero.

Para cualquier superficie no cerrada A, se define el flujo magnético como:

Y su unidad en el Sistema Internacional es el Weber (Wb). Puede demostrarse que dado un determinado contorno, el flujo magnético sobre cualquier superficie que se apoye en dicho contorno es constante, es decir, el flujo a través de una determinada superficie sólo depende del contorno sobre el que se apoya.

Otra de las implicaciones del carácter solenoidal del campo de inducción es la de que existe una función vectorial de la que deriva:

Puesto que

Para cualquier vector A. Este vector así definido recibe el nombre de potencial vector, y su unidad en el S.I. es el Wb/m. Al igual de lo que ocurre en el caso del potencial electrostático V, el potencial vector no está unívocamente determinado puesto que si le añade cualquier magnitud vectorial de rotacional nulo se llega al mismo campo magnético B.

La expresión de este potencial vector puede obtenerse operando a partir de la ley de Biot-Savart, obteniéndose:

En el caso particular de un problema con corrientes filiformes, la anterior expresión resulta ser:

Es importante señalar que el potencial vector A no suele tener la utilidad del potencial escalar, resultando ser tan difícil de calcular, si no más, que el campo B en muchas ocasiones. Además no es fácil darle la interpretación energética que tenía el potencial escalar V en el caso de la electrostática. Sin embargo, si es posible calcular el flujo del campo a través de este potencial:

Donde la segunda igualdad se establece en virtud del teorema de Stokes. A través de la anterior expresión puede comprobarse que el flujo magnético sólo depende del valor del potencial vector A a lo largo del contorno donde se apoya la superficie.

Finalmente, y para acabar de determinar las propiedades del campo B debemos calcular su rotacional. Aplicando dicho operador a la expresión de B dada por la ley de Biot-Savart, se obtiene:

Que se denomina forma diferencial del teorema de Ampère. A partir de la forma diferencial del teorema de Ampère podemos obtener una forma integral que resulta de gran utilidad para el cálculo de B en problemas de gran simetría. Para ello, partimos de la expresión del flujo del rotacional de B, que, aplicando el teorema de Stokes resulta ser:

Si aplicamos la forma diferencial dada obtendremos:

Ahora bien, teniendo en cuenta la definición de la densidad de corriente dada, la anterior ecuación toma la siguiente forma final :

Que es el teorema de Ampère en forma integral y establece que la circulación de B a lo largo de una línea cerrada es igual a  0 veces la corriente total que encierra dicha línea.

Por lo tanto, si una corriente atraviesa varias veces esa línea hay que contar tantas veces como la atraviese. En aquellos casos con claras simetrías, eligiendo un camino para la integral en el que B sea constante en módulo y dirección, y paralelo en todo punto al vector dl, se puede determinar con gran facilidad el valor del campo magnético. Esta ley es la análoga al teorema de Gauss en electrostática, aunque en principio ésta es válida en todo caso, mientras que el teorema de Ampère sólo lo es para campos estáticos.

Fuentes del campo magnético

Un campo magnético tiene dos fuentes que lo originan. Una de ellas es una corriente eléctrica de conducción, que da lugar a un campo magnético estático, si es constante. Por otro lado una corriente de desplazamiento origina un campo magnético variante en el tiempo, incluso aunque aquella sea estacionaria.

La relación entre el campo magnético y una corriente eléctrica está dada por la ley de Ampère. El caso más general, que incluye a la corriente de desplazamiento, lo da la ley de Ampère-Maxwell.

Campo magnético producido por una carga puntual

El campo magnético generado por una única carga en movimiento (no por una corriente eléctrica) se calcula a partir de la siguiente expresión:

Donde . Esta última expresión define un campo vectorial solenoidal, para distribuciones de cargas en movimiento la expresión es diferente, pero puede probarse que el campo magnético sigue siendo un campo solenoidal.

Campo magnético producido por una distribución de cargas

• La inexistencia de cargas magnéticas lleva a que el campo magnético es un campo solenoidal lo que lleva a que localmente puede ser derivado de un potencial vector , es decir:

A su vez este potencial vector puede ser relacionado con el vector densidad de corriente mediante la relación:

La ecuación anterior planteada sobre , con una distribución de cargas contenida en un conjunto compacto, la solución es expresable en forma de integral. Y el campo magnético de una distribución de carga viene dado por:

Inexistencia de cargas magnéticas aisladas

Cabe destacar que, a diferencia del campo eléctrico, en el campo magnético no se ha comprobado la existencia de monopolos magnéticos, sólo dipolos magnéticos, lo que significa que las líneas de campo magnético son cerradas, esto es, el número neto de líneas de campo que entran en una superficie es igual al número de líneas de campo que salen de la misma superficie. Un claro ejemplo de esta propiedad viene representado por las líneas de campo de un imán, donde se puede ver que el mismo número de líneas de campo que salen del polo norte vuelve a entrar por el polo sur, desde donde vuelven por el interior del imán hasta el norte.

Ilustración de un campo magnético alrededor de un alambre a través del cual fluye corriente eléctrica.

Como se puede ver en el dibujo, independientemente de que la carga en movimiento sea positiva o negativa, en el punto A nunca aparece campo magnético; sin embargo, en los puntos B y C el campo magnético invierte su dirección dependiendo de si la carga es positiva o negativa. La dirección del campo magnético viene dado por la regla de la mano derecha, siendo las pautas las siguientes:

• en primer lugar se imagina un vector qv, en la misma dirección de la trayectoria de la carga en movimiento. La dirección de este vector depende del signo de la carga, esto es, si la carga es positiva y se mueve hacia la derecha, el vector +qv estará orientado hacia la derecha. No obstante, si la carga es negativa y se mueve hacia la derecha, el vector es -qv va hacia la izquierda;

• a continuación, vamos señalando con los cuatro dedos de la mano derecha (índice, medio, anular y meñique), desde el primer vector qv hasta el segundo vector Ur, por el camino más corto o, lo que es lo mismo, el camino que forme el ángulo menor entre los dos vectores. El pulgar extendido indicará en ese punto la dirección del campo magnético.

Energía almacenada en campos magnéticos

La energía es necesaria para generar un campo magnético, para trabajar contra el campo eléctrico que un campo magnético crea y para cambiar la magnetización de cualquier material dentro del campo magnético. Para los materiales no-dispersivos, se libera esta misma energía tanto cuando se destruye el campo magnético para poder modelar esta energía, como siendo almacenado en el campo magnético.

Para materiales lineales y no dispersivos (tales que donde μ es independiente de la frecuencia), la densidad de energía es:

Si no hay materiales magnéticos alrededor, entonces el μ se puede substituir por μ0. La ecuación antedicha no se puede utilizar para los materiales no lineales, se utiliza una expresión más general dada abajo.

Generalmente la cantidad incremental de trabajo por el δW del volumen de unidad necesitado para causar un cambio pequeño del δB del campo magnético es: δW= H*δB

Una vez que la relación entre H y B se obtenga, esta ecuación se utiliza para determinar el trabajo necesitado para alcanzar un estado magnético dado. Para los materiales como los ferromagnéticos y superconductores el trabajo necesitado también dependerá de cómo se crea el campo magnético.

Determinación del campo de inducción magnética B

La figura muestra las relaciones entre los vectores. Se observa que:

* (a) La fuerza magnética se anula cuando ,

* (b) La fuerza magnética se anula si v es paralela o antiparalela a la dirección de B (en estos casos o bien y )

*(c) si v es perpendicular a B ( ) la fuerza desviadora tiene su máximo valor, dado por:

El campo magnético para cargas que se mueven a velocidades pequeñas comparadas con velocidad de la luz, puede representarse por un campo vectorial. Sea una carga eléctrica de prueba en un punto P de una región del espacio moviéndose a una cierta velocidad arbitraria v respecto a un cierto observador que no detecte campo eléctrico. Si el observador detecta una deflexión de la trayectoria de la partícula entonces en esa región existe un campo magnético. El valor o intensidad de dicho campo magnético puede medirse mediante el llamado vector de inducción magnética B, a veces llamado simplemente "campo magnético", que estará relacionado con la fuerza F y la velocidad v medida por dicho observador en el punto P: Si se varía la dirección de v por P, sin cambiar su magnitud, se encuentra, en general, que la magnitud de F varía, si bien se conserva perpendicular a v . A partir de la observación de una pequeña carga eléctrica de prueba puede determinarse la dirección y módulo de dicho vector del siguiente modo:

• La dirección del "campo magnético" se define operacionalmente del siguiente modo. Para una cierta dirección de v, la fuerza F se anula. Se define esta dirección como la de B.

• Una vez encontrada esta dirección el módulo del "campo magnético" puede encontrarse fácilmente ya que es posible orientar a v de tal manera que la carga de prueba se desplace perpendicularmente a B. Se encuentra, entonces, que la F es máxima y se define la magnitud de B determinando el valor de esa fuerza máxima:

En consecuencia: Si una carga de prueba positiva se dispara con una velocidad v por un punto P y si obra una fuerza lateral F sobre la carga que se mueve, hay una inducción magnética B en el punto P siendo B el vector que satisface la relación:

La magnitud de F, de acuerdo a las reglas del producto vectorial, está dada por la expresión:

Expresión en la que es el ángulo entre v y B.

El hecho de que la fuerza magnética sea siempre perpendicular a la dirección del movimiento implica que el trabajo realizado por la misma sobre la carga, es cero. En efecto, para un elemento de longitud de la trayectoria de la partícula, el trabajo es que vale cero por ser y perpendiculares. Así pues, un campo magnético estático no puede cambiar la energía cinética de una carga en movimiento.

Si una partícula cargada se mueve a través de una región en la que coexisten un campo eléctrico y uno magnético la fuerza resultante está dada por:

Esta fórmula es conocida como Relación de Lorentz

Campo magnético en relatividad

Campo medido por dos observadores

La teoría de la relatividad especial probó que de la misma manera que espacio y tiempo no son conceptos absolutos, la parte eléctrica y magnética de un campo electromagnético dependen del observador. Eso significa que dados dos observadores y en movimiento relativo un respecto a otro el campo magnético y eléctrico medido por cada uno de ellos no será el mismo. En el contexto de la relatividad especial si los dos observadores se mueven uno respecto a otro con velocidad uniforme v dirigida según el eje X, las componentes de los campos eléctricos medidas por uno y otro observador vendrán relacionadas por:

Y para los campos magnéticos se tendrá:

Nótese que en particular un observador en reposo respecto a una carga eléctrica detectará sólo campo eléctrico, mientras que los observadores que se mueven respecto a las cargas detectarán una parte eléctrica y magnética.

Campo creado por una carga en movimiento

El campo magnético creado por una carga en movimiento puede probarse por la relación general:

Que es válida tanto en mecánica newtoniana como en mecánica relativista. Esto lleva a que una carga puntual moviéndose a una velocidad v proporciona un campo magnético dado por:

Unidades y magnitudes típicas

La unidad de B en el SI es el tesla, que equivale a wéber por metro cuadrado (Wb/m²) o a voltio segundo por metro cuadrado (V s/m²); en unidades básicas es kg s−2 A−1. Su unidad en sistema de Gauss es el gauss (G); en unidades básicas es cm−1/2 g1/2 s−1.

La unidad de H en el SI es el amperio por metro (A/m) (a veces llamado amperivuelta por metro, (Av/m)). Su unidad en el sistema de Gauss es el oérsted (Oe), que es dimensionalmente igual al Gauss.

La magnitud del campo magnético terrestre en la superficie de la Tierra es de alrededor de 0.5G. Los imanes permanentes comunes, de hierro, generan campos de unos pocos cientos de Gauss, esto es a corto alcance la influencia sobre una brújula es alrededor de mil veces más intensa que la del campo magnético terrestre; como la intensidad se reduce con el cubo de la distancia, a distancias relativamente cortas el campo terrestre vuelve a dominar. Los imanes comerciales más potentes, basados en combinaciones de metales de transición y tierras raras generan campos hasta diez veces más intensos, de hasta 3000-4000 G, esto es, 0.3-0.4 T. El límite teórico para imanes permanentes es alrededor de diez veces más alto, unos 3 Tesla. Los centros de investigación especializados obtienen de forma rutinaria campos hasta diez veces más intensos, unos 30T, mediante electroimanes; se puede doblar este límite mediante campos pulsados, que permiten enfriarse al conductor entre pulsos. En circunstancias extraordinarias, es posible obtener campos incluso de 150 T o superiores, mediante explosiones que comprimen las líneas de campo; naturalmente en estos casos el campo dura sólo unos microsegundos. Por otro lado, los campos generados de forma natural en la superficie de un púlsar se estiman en el orden de los cientos de millones de Tesla.3

En el mundo microscópico, atendiendo a los valores del momento dipolar de iones magnéticos típicos y a la ecuación que rige la propagación del campo generado por un dipolo magnético, se verifica que a un nanómetro de distancia, el campo magnético generado por un electrón aislado es del orden de 3 G, el de una molécula imán típica, del orden de 30 G y el de un ion magnético típico puede tener un valor intermedio, de 5 a 15 G. A un Angstrom, que es un valor corriente para un radio atómico y por tanto el valor mínimo para el que puede tener sentido referirse al momento magnético de un ion, los valores son mil veces más elevados, esto es, del orden de magnitud del Tesla.

Conclusión

Bueno como conclusión a todo esto que hemos visto podemos decir en resumen que, el magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. El magnetismo se utiliza para el diseño de todos los motores y generadores, y electroimanes; la palabra magnetismo tiene su origen en una isla del mar Egeo. El magnetismo de los materiales es el resultado del movimiento de los electrones dentro de sus átomos. Los átomos en el material magnético se orientan en una sola dirección y en los no magnéticos se orientan al azar.

Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. La fuerza magnética entre imanes y/o electroimanes es un efecto residual de la fuerza magnética entre cargas en movimiento.

Los imanes pueden atraerse o repelerse al hacer contacto con otros; Son los extremos del imán y es donde está concentrado todo su poder de atracción. En la zona neutral, la fuerza de atracción es prácticamente nula. Los polos magnéticos son llamados polo norte y polo sur y todos los imanes tendrán 2 polos. Los polos iguales se repelen y los diferentes se atraen.

La permeabilidad magnética es la capacidad física del medio de permitir el paso de líneas de flujo.

La histéresis es el retraso de la magnetización con respecto a la intensidad magnética.

El momento de torsión es el trabajo que hace que un dispositivo gire cierto ángulo en su propio eje, oponiendo este una resistencia al cambio de posición. Los motores de corriente continua convierten la energía eléctrica en energía mecánica. La Ley de inducción electromagnética de Faraday se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde.

Ley de Lenz: una corriente inducida fluirá en una dirección tal que por medio de su campo magnético se opondrá al movimiento del campo magnético que la produce. Si se realiza más trabajo para mover el imán en la bobina, mayor será la corriente inducida y por lo tanto mayor será la fuerza de resistencia. Un generador transforma energía mecánica en energía eléctrica, es lo contrario de un motor.

El transformador es un elemento que aumenta o disminuye el voltaje en un circuito de corriente alterna. El transformador tiene 3 partes esenciales: una bobina primaria, una bobina secundaria y un núcleo de hierro dulce.

...

Descargar como  txt (33 Kb)  
Leer 20 páginas más »
txt