Criterios De Congruencia De Triangulos
daniel_99818 de Agosto de 2013
552 Palabras (3 Páginas)847 Visitas
Criterios de congruencia de triángulos
Los criterios de congruencia de triángulos nos dicen que no es necesario verificar la congruencia de los 6 pares de elementos (3 pares de lados y 3 pares de ángulos), bajo ciertas condiciones, podemos verificar la congruencia de tres pares de elementos.
Primer criterio de congruencia: LLL
Dos triángulos son congruentes si sus tres lados son respectivamente iguales.
a ≡ a’
b ≡ b’
c ≡ c’
→ triáng ABC ≡ triáng A’B'C’
Segundo criterio de congruencia: LAL
Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos.
b ≡ b’
c ≡ c’
α ≡ α’
→ triáng ABC ≡ triáng A’B'C’
Tercer criterio de congruencia: ALA
Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado.
b ≡ b’
α ≡ α’
β ≡ β’
→ triáng ABC ≡ triáng A’B'C’
Cuarto criterio de congruencia: LLA
Dos triángulos son congruentes si tienen dos lados respectivamente congruentes y los ángulos opuestos al mayor de los lados también son congruentes.
a ≡ a’
b ≡ b’
β ≡ β’
→ triáng ABC ≡ triáng A’B'C’
Observa los siguientes triángulos:
Al mirar los dos pares de triángulos se puede apreciar que en ambos los triángulos tienen entre si la misma forma y tamaño.
Cuando se cumplen estas dos condiciones se dice que los triángulos son congruentes; esta palabra (congruente) se simboliza o representa con el símbolo .
Definición:
Se dice que un Δ ABC es congruente con otro Δ DEF si sus lados respectivos son iguales y sus ángulos respectivos también lo son.
Para expresar en lenguaje matemático que los dos triángulos de la izquierda son congruentes, se usa la siguiente simbología:
Al observar los triángulos de la figura puede apreciarse que tienen lados respectivamente congruentes, que son:
También tienen ángulos respectivamente congruentes:
Entonces es posible afirmar que .
Al revés: si dos o más triángulos son congruentes, sus lados y ángulos lo serán respectivamente, en el orden de las letras asignadas a sus vértices para nombrarlos, salvo que gráficamente se indique otra correspondencia.
Si, por ejemplo, tenemos Δ ABR Δ CDS, sus lados respectivamente congruentes serán:
Y los ángulos respectivamente congruentes serán:
Criterios de congruencia
Los criterios de congruencia corresponden a los postulados y teoremas que enuncian cuáles son las condiciones mínimas que deben reunir dos o más triángulos para que sean congruentes.
Estas son:
1.- Congruencia de sus lados
2.- Congruencia de sus ángulos
Para que dos triángulos sean congruentes, es suficiente que sólo algunos lados y/o ángulos sean iguales.
Los postulados o criterios básicos de congruencia de triángulos son:
Postulado LAL
LAL significa lado-ángulo-lado.
Dos triángulos son congruentes si tienen dos lados y el ángulo determinado por ellos respectivamente iguales.
Postulado ALA
ALA significa ángulo-lado-ángulo.
Dos triángulos son congruentes si tienen dos ángulos y el lado común a ellos, respectivamente, iguales.
Postulado LLA
LLA significa
...