ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS

leoramrey25 de Agosto de 2011

5.058 Palabras (21 Páginas)1.454 Visitas

Página 1 de 21

ESTADÍSTICA DESCRIPTIVA

CONCEPTOS BÁSICOS

INTRODUCCIÓN

La investigación cuya finalidad es: el análisis o experimentación de situaciones para el descubrimiento de nuevos hechos, la revisión o establecimiento de teorías y las aplicaciones prácticas de las mismas, se basa en los principios de Observación y Razonamiento y necesita en su carácter científico el análisis técnico de Datos para obtener de ellos información confiable y oportuna. Este análisis de Datos requiere de la Estadística como una de sus principales herramientas, por lo que los investigadores de profesión y las personas que de una y otra forma la realizan requieren además de los conocimientos especializados en su campo de actividades, del manejo eficiente de los conceptos, técnicas y procedimientos estadísticos.

ESTADÍSTICA

Es el conjunto de procedimientos y técnicas empleadas para recolectar, organizar y analizar datos, los cuales sirven de base para tomar decisiones en las situaciones de incertidumbre que plantean las ciencias sociales o naturales.

ESTADÍSTICA INDUCTIVA Y DEDUCTIVA

Uno de los problemas fundamentales de la Estadística es el estudio de la relación existente entre una población y sus muestras. Según la dirección de tal relación la Estadística puede ser:

Deductiva, cuando a partir del conocimiento de la población se trata de caracterizar cada muestra posible.

Inductiva, cuando a partir del conocimiento derivado de una muestra se pretende caracterizar la población.

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL

Estadística Descriptiva se refiere a la recolección, presentación, descripción, análisis e interpretación de una colección de datos, esencialmente consiste en resumir éstos con uno o dos elementos de información (medidas descriptivas) que caracterizan la totalidad de los mismos. La estadística Descriptiva es el método de obtener de un conjunto de datos conclusiones sobre si mismos y no sobrepasan el conocimiento proporcionado por éstos. Puede utilizarse para resumir o describir cualquier conjunto ya sea que se trate de una población o de una muestra, cuando en la etapa preliminar de la Inferencia Estadística se conocen los elementos de una muestra.

Estadística Inferencial se refiere al proceso de lograr generalizaciones acerca de las propiedades del todo, población, partiendo de lo específico, muestra. las cuales llevan implícitos una serie de riesgos. Para que éstas generalizaciones sean válidas la muestra deben ser representativa de la población y la calidad de la información debe ser controlada, además puesto que las conclusiones así extraídas están sujetas a errores, se tendrá que especificar el riesgo o probabilidad que con que se pueden cometer esos errores. La estadística inferencial es el conjunto de técnicas que se utiliza para obtener conclusiones que sobrepasan los límites del conocimiento aportado por los datos, busca obtener información de un colectivo mediante un metódico procedimiento del manejo de datos de la muestra.

En sus particularidades la Inferencia distingue la Estimación y la Contrastación de Hipótesis. Es estimación cuando se usan las características de la muestra para hacer inferencias sobre las características de la población. Es contrastación de hipótesis cuando se usa la información de la muestra para responder a interrogantes sobre la población.

ANALISIS ESTADÍSTICO

El análisis estadístico es todo el proceso de organización, procesamiento, reducción e interpretación de datos para realizar inferencias.

DATOS Y VARIABLES

Cuando se consideran los métodos de organización, reducción y análisis de datos estadísticos, se hace necesario aclarar los siguientes conceptos.

Variables: es toda característica que varía de un elemento a otro de la población.

Datos: son medidas o valores de las características susceptibles de observar y contar, se originan por la observación de una o más variables de un grupo de elementos o unidades

CLASIFICACIÓN DE VARIABLES

Las variables pueden clasificarse en: categóricas o cualitativas (atributos), no tienen ningún grado de comparación numérica, ejemplo: sexo, estado civil; y numéricas o cuantitativas, son características factibles de expresar por medio de números, estas pueden ser Discretas, que solo pueden tomar ciertos valores aislados en un intervalo, y Continuas, que pueden tomar cualquier valor en un intervalo.

REPRESENTACIÓN DE DATOS

Los datos son colecciones de un número cualquiera de observaciones relacionadas entre si, para que sean útiles se deben organizar de manera que faciliten su análisis, se puedan seleccionar tendencias, describir relaciones, determinar causas y efectos y permitan llegar a conclusiones lógicas y tomar decisiones bien fundamentadas; por esa razón es necesario conocer lo métodos de Organización y Representación, la finalidad de éstos métodos es permitir ver rápidamente todas las características posibles de los datos que se han recolectado.

Representación Tabular:

Presenta las variable y las frecuencias con que los valores de éstas se encuentran presentes en el estudio.

Representación Gráfica :

Se llaman gráficas a las diferentes formas de expresar los datos utilizando los medios de representación que proporciona la geometría.

METODOS DE REPRESENTACIÓN DE DATOS CUANTITATIVOS

Arreglo de Datos. Es una forma de presentar los datos en un arreglo ascendente o descendente. Ofrece las ventajas siguientes: describe los valores mínimos y máximos, en él se pueden dividir los datos fácilmente en secciones, permite darse cuenta de los valores que aparecen más de una vez, se puede observar la distancia entre valores consecutivos.

Diagrama de Puntos. Muestra la frecuencia con que aparece cada uno de los valores

Diagrama de Tallo y Hoja. Es útil para realizar una exploración preliminar del conjunto, genera una imagen adecuada de ellos sin perder información.

Distribución de Frecuencias. Es una forma de sintetizar los datos y consiste en valerse de una tabla para clasificar los datos según su magnitud, en ella se señala el número de veces que aparece cada uno de los valores. Cuando se dispone de un gran número de valores discretos o cuando las variables son continuas, tiene sentido formar una tabla que presente la distribución de frecuencias de los datos agrupados en intervalos o clases, de igual tamaño si es posible, sin embargo una tabla de este tipo supone una concentración de datos que produce pérdida de información.

DISTRIBUCIÓN DE FRECUENCIAS

Organización de datos agrupados

Definiciones

Clases o intervalos de clase: Grupo de valores que describen una característica. Deben incluir todas las observaciones y ser excluyentes. Los intervalos contienen los límites de clase que son los puntos extremos del intervalo. Se denominan intervalos cerrados, cuando contienen ambos límites e intervalos abiertos si incluyen solo un límite.

Limites Reales: Sirven para mantener la continuidad de las clases

Anchura o tamaño del intervalo: es la diferencia entre los límites reales de una clase

Número de clases: es el número total de grupos en que se clasifica la información, se recomienda que no sea menor que 5 ni mayor que 15

Marca de Clase: Es el punto medio del intervalo de clase, se recomienda observar que los puntos medios coincidan con los datos observados para minimizar el error.

Frecuencia: es el número de veces que aparece un valor

Frecuencia Acumulada: Indica cuantos casos hay por debajo o arriba de un determinado valor o límite de clase.

Frecuencia Relativa: Indica la proporción que representa la frecuencia de cada intervalo de clase en relación al total, es útil para comparar varias distribuciones con parámetros de referencia uniformes.

Frecuencia Acumulada Relativa: Indica la proporción de datos que se encuentra por arriba o debajo de cierto valor o límite de clase.

Gráficos de una Distribución de Frecuencias

Los gráficos son útiles porque ponen en relieve y aclaran las tendencias que no se captan fácilmente en la tabla, ayudan a estimar valores con una simple ojeada y brinda una verificación gráfica de la veracidad de las soluciones.

Histograma:

Esta formado por rectángulos cuya base es la amplitud del intervalo y tiene la característica que la superficie que corresponde a las barras es representativa de la cantidad de casos o frecuencia de cada tramo de valores, puede construirse con clases que tienen el mismo tamaño o diferente ( intervalo variable). La utilización de los intervalos de amplitud variable se recomienda cuando en alguno de los intervalos , de amplitud constante, se presente la frecuencia cero o la frecuencia de alguno o algunos de los intervalos sea mucho mayor que la de los demás, logrando así que las observaciones se hallen mejor repartidas dentro del intervalo.

Polígono de Frecuencias

Se puede obtener uniendo cada punto medio (marca de clase) de los rectángulos del histograma con líneas rectas, teniendo cuidado de agregar al inicio y al final marcas de clase adicionales, con el objeto de asegurar la igualdad del áreas.

Curvas de frecuencia

No es más que la curva suavizada que se traza sobre el polígono y representa la asimetría y la curtosis que tiene la distribución, permite visualizar un esquema más claro del patrón de datos. Existen varios tipos de curva de frecuencia: Curvas J, Simétricas o Asimétricas (sesgada a la derecha o a la izquierda), Unimodales, Bimodales y Multimodales.

Ojivas: Cuando se trata de relacionar

...

Descargar como (para miembros actualizados) txt (32 Kb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com