Cuadro Sinoptico Del Sistema Simpatico Y Parasimpatico
246813526 de Febrero de 2014
7.265 Palabras (30 Páginas)870 Visitas
LAS NEURONAS Y LAS CLASES DE SINAPSIS.
NEURONAS
Nuestra vida mental implica la actividad del sistema nervioso, especialmente el cerebro. Este sistema nervioso está compuesto por miles de millones de células, las más simples de las cuales son las células nerviosas o neuronas. ¡Se estima que debe haber cien mil millones de neuronas en nuestro sistema nervioso!
Una neurona típica tiene todas las partes que cualquier otra célula pueda tener, y unas pocas estructuras especializadas que la diferencian. La principal parte de la célula es llamada soma o cuerpo celular. Contiene el núcleo, el cual contiene el material genético en forma de cromosomas.
Las neuronas tienen un gran número de extensiones llamadas dendritas. A menudo parecen como ramas o puntos extendiéndose fuera del cuerpo celular. Las superficies de las dendritas son principalmente lugar donde se reciben los mensajes químicos de otras neuronas.
Hay una extensión que es diferente de todas las demás, y se llama axón. A pesar de que en algunas neuronas es difícil distinguirlo de las dendritas, en otras es fácilmente distinguible por su longitud. La función del axón es transmitir una señal electroquímica a otras neuronas, algunas veces a una distancia considerable. En las neuronas que componen los nervios que van desde la medula espinal hasta tus pies, ¡los axones pueden medir hasta casi 1 metro!
Los axones más largos están a menudo recubiertos con una capa de mielina, una serie de células grasas que envuelven al axón muchas veces. Eso hace al axón parecer como un collar de granos en forma de salchicha. Sirven para una función similar a la del aislamiento de los cables eléctricos.
Al final del axón está la terminación del axón, que recibe una variedad de nombres como terminación, botón sináptico, pié del axón, y otros. Es allí donde la señal electroquímica que ha recorrido la longitud del axón se convierte en un mensaje químico que viaja hasta la siguiente neurona.
Entre la terminación del axón y la dendrita de la siguiente neurona hay un pequeño salto llamado sinapsis (o salto sináptico, o grieta sináptica), sobre la cual discutiremos un poco. Para cada neurona, hay entre 1000 y 10.000 sinapsis.
EL POTENCIAL DE ACCIÓN
Cuando las sustancias químicas hacen contacto con la superficie de la neurona, estas cambian el balance de iones (átomos cargados electrónicamente) entre el interior y el exterior de la membrana celular. Cuando este cambio alcanza un nivel umbral, este efecto se expande a través de la membrana de la célula hasta el axón. Cuando alcanza al axón, se inicia un potencial de acción.
La superficie del axón contiene cientos de miles de minúsculos mecanismos llamados bombas de sodio. Cuando la carga entra en el axón, las bombas de sodio a la base del axón hacen que los átomos de sodio entren en el axón, cambiando el balance eléctrico entre dentro y fuera. Esto causa que la siguiente bomba de sodio haga los mismo, mientras que las anteriores bombas retornan el sodio hacia fuera, y así en todo el recorrido hacia abajo del axón.
¡El potencial de acción viaja a una media de entre 2 y 400 kilómetros por hora!
TIPOS DE NEURONAS
Aunque hay muchos tipos diferentes de neuronas, hay tres grandes categorías basadas en su función:
1. Las neuronas sensoriales son sensibles a varios estímulos no neurales. Hay neuronas sensoriales en la piel, los músculos, articulaciones, y órganos internos que indican presión, temperatura, y dolor. Hay neuronas más especializadas en la nariz y la lengua que son sensibles a las formas moleculares que percibimos como sabores y olores. Las neuronas en el oído interno nos proveen de información acerca del sonido, y los conos y bastones de la retina nos permiten ver.
2. Las neuronas motoras son capaces de estimular las células musculares a través del cuerpo, incluyendo los músculos del corazón, diafragma, intestinos, vejiga, y glándulas.
3. Las interneuronas son las neuronas que proporcionan conexiones entre las neuronas sensoriales y las neuronas motoras, al igual que entre ellas mismas. Las neuronas del sistema nervioso central, incluyendo al cerebro, son todas interneuronas.
La mayoría de las neuronas están reunidas en "paquetes" de un tipo u otro, a menudo visible a simple vista. Un grupo de cuerpos celulares de neuronas, por ejemplo, es llamado un ganglio o un núcleo. Una fibra hecha de muchos axones se llama un nervio. En el cerebro y la médula espinal, las áreas que están compuestas en su mayoría por axones se llaman materia blanca, y es posible diferenciar vías o tractos de esos axones. Las áreas que incluyen un gran número de cuerpos celulares se llaman materia gris.
LA SINAPSIS
La sinapsis es una unión (funcional) intercelular especializada entre neuronas o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso. Éste se inicia con una descarga química que origina una corriente eléctrica en la membrana de la célula pre sináptica (célula emisora); una vez que este impulso nervioso alcanza el extremo del axón (la conexión con la otra célula), la propia neurona segrega un tipo de compuestos químicos (neurotransmisores) que se depositan en el espacio sináptico (espacio intermedio entre esta neurona transmisora y la neurona pos sináptica o receptora). Estas sustancias segregadas o neurotransmisoras (noradrenalina y acetilcolina entre otros) son los encargados de excitar o inhibir la acción de la otra célula llamada célula post sináptica.
En su extremo, el axón de los nervios se ramifica en muchos terminales pequeños que llegan a estar en contacto estrecho con las dendritas de otras neuronas. Al contacto entre dos neuronas se le llama sinapsis. El axón y la dendrita nunca se tocan. Siempre hay un pequeño vacío llamado hendidura sináptica. Cuando la señal eléctrica llega a un terminal nervioso, hace que el nervio libere neurotransmisores. Los neurotransmisores son agentes químicos que viajan una corta distancia hasta las dendritas más próximas. A la neurona que libera el neurotransmisor se le llama neurona presináptica. A la neurona receptora de la señal se le llama neurona postsinaptica. Dependiendo del tipo de neurotransmisor liberado, las neuronas postsinapticas son estimuladas (excitadas) o desestimuladas (inhibidas). Cada neurona se comunica con muchas otras al mismo tiempo. Puesto que una neurona puede enviar o no un estímulo, su comportamiento siempre se basa en el equilibrio de influencias que la excitan o la inhiben en un momento dado. Las neuronas son capaces de enviar estímulos varias veces por segundo.
COMPONENTES DE LA NEURONA:
Superficie presinaptica (botón sináptico)
Espacio sináptico
Superficie Postsinaptica
CLASES DE SINAPSIS
La función de la neurona es la comunicación y la función del SN es generar un comportamiento, ambos en virtud de las conexiones interneuronales. Una neurona ejerce su influencia para excitar a otras neuronas mediante los puntos de unión o sinapsis. Cada unión sináptica está formada por una parte de una neurona (terminal sináptico) que conduce un impulso a la sinapsis y por otra, de otra neurona (estructura postsináptica) que recibe el impulso en la sinapsis.
La dinámica estructural y funcional para que se lleve a cabo una sinapsis entre dos neuronas está dada por el movimiento, descarga, receptación y reformación (re síntesis) de un neurotransmisor. Algunos neurotransmisores, como los péptidos, por ejemplo, son producidos en el soma, empaquetados en las vesículas que migran a través del axón mediante flujo axoplásmico por medio de los microtúbulos hacia el terminal presináptico donde se conocen con el nombre de vesículas sinápticas. La naturaleza del contenido de la vesícula sináptica varía dependiendo de la región cerebral de donde esta proceda. Cuando un impulso llega al terminal sináptico está acompañado por la entrada de iones calcio en el citoplasma neuronal. El calcio proviene de los fluidos tisulares que están fuera de la neurona (espacio extracelular), estos iones, que han atravesado la membrana celular se unen a la molécula transportadora. Los iones calcio impulsan la migración de alguna de las vesículas sinápticas hacia la membrana presináptica, la membrana de cada vesícula sufre un proceso de fusión como la membrana presináptica, lo cual esta seguido por una expulsión rápida exocitosis del neurotransmisor libre en la hendidura sináptica.
El neurotransmisor liberado en la hendidura sináptica interacciona directamente con las moléculas del receptor en la membrana postsináptica. Mediante este tipo de interacción se abren un gran número de canales iónicos específicos que permiten el flujo de una corriente eléctrica, transportada por iones cargados a través de la membrana postsináptica lo que afecta al estado electroquímico de la membrana en el área inmediata al canal. De esta forma la excitabilidad eléctrica de esta pequeña porción de membrana puede aumentar o disminuir mediante despolarización o hiperpolarización de la misma. Las alteraciones eléctricas individuales de la membrana postsináptica ejercen un efecto en el potencial de membrana de la neurona, que puede llevar a la generación del impulso nervioso.
Existen algunos principios generales para la identificación de dos tipos de sinapsis: excitadoras e inhibidoras. Datos electrofisiológicos, muestran la distribución de las sinapsis excitadoras a nivel de la porción superior del árbol dendrítico de las neuronas centrales
...