ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matemática

sasddasasasd1 de Junio de 2014

733 Palabras (3 Páginas)238 Visitas

Página 1 de 3

Republica Bolivariana de Venezuela

Ministerio del Poder Popular para la Educación

Unidad Educativa Colegio Don Bosco

5to Año Sección U

Materia: Matemática

Docente: Alumno:

Prof. Mapy Rojas Livio Berti

Índice

Introducción……………………………………………………………………………....3

Desarrollo…………………………………………………………………………..4,5,6,7

Conclusiones…………………………………………………………………………….8

Bibliografía………………………………………………………………………………..9

Introducción

Las cónicas constituyen uno de los conjuntos de curvas más importantes de la Geometría y que más se utilizan en distintas ramas de la Ciencia y la Ingeniería.

En este trabajo presentamos lugares geométricos que son muy importantes en la Geometría analítica y que se originan de considerar cortes en diferentes ángulos de un cono doble circular recto, mediante un plano, dando lugar a las figuras llamadas precisamente CÓNICAS, o también SECCIONES CÓNICAS, las que según el ángulo de corte reciben el nombre de parábola, elipse, hipérbola, y algunos casos especiales de estas curva.

Todas estas secciones cónicas tiene una propiedad común que es satisfecha por cada uno de sus puntos, y es que el cociente de la distancia de cada uno de estos puntos hasta un punto fijo F, llamado foco, entre su distancia a una recta fija D, llamada directriz, es siempre constante, denotada por e y denominada excentricidad.

Cónicas

Se denomina cónica a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola, hipérbola y circunferencia.

Etimología

El matemático griego Menecmo descubrió estas curvas y fue el matemático griego Apolonio de Perga (antigua cuidad del Asia Menor) el primero en estudiar detalladamente las curvas cónicas y encontrar la propiedad plana que las definía.

Apolonio descubrió que las cónicas se podían clasificar en tres tipos a los que dio por nombre: elipse, hipérbola y parábola.

Apolonio demostró que las curvas cónicas tienen muchas propiedades interesantes. Algunas de esas propiedades son las que se utilizan actualmente para definirlas. Quizá las propiedades más interesantes y útiles que descubrió Apolonio de las cónicas son las llamadas propiedades de reflexión. Si se construyen espejos con la forma de una curva cónica que gura alrededor de su eje, se obtienen los llamados espejos elípticos, parabólicos o hiperbólicos, según la curva que gura.

Apolonio demostró que si se coloca una fuente de luz en el foco de un espejo elíptico, entonces la luz reflejada en el espejo se concentra en el otro foco. Si se recibe luz de una fuente lejana con un espejo parabólico de manera que los rayos incidentes son paralelos al eje del espejo, entonces la luz reflejada por el espejo se concentra en el foco. Esta propiedad permite encender un papel si se coloca en el foco de un espejo parabólico y el eje del espejo se apunta hacia el sol.

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com