ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Actividad fiscia de semiconductores. Dispositivivos semiconductores que se usan en electronica

2 de Mayo de 2014

7.646 Palabras (31 Páginas)182 Visitas

Página 1 de 31

ACTIVIDAD FISICA DE SEMICONDUCTORES

1. INTRODUCCIÓN

Un dispositivo electrónico controla alguna de las variables de entrada al circuito. Por ejemplo, al entrar un voltaje y una corriente a un diodo, alguno de los dos es alterado. En este caso, el voltaje sale con un valor diferente. Ésta es la diferencia entre unos dispositivos y otros.

Para nuestros propósitos, la definición de dispositivo electrónico es aquel que permite controlar el movimiento de cargas eléctricas (corrientes) en materiales semiconductores bajo la presencia de diversas energías.

Conductores y aisladores

Los sólidos que tienen una resistividad eléctrica pequeña a la temperatura ambiente se llaman conductores. Aquí están incluidos la mayoría de los metales como el cobre, el aluminio y la plata.

Los sólidos que tienen una resistividad eléctrica elevada a la temperatura ambiente se llaman aisladores. Ejemplos de sólidos de este tipo son la porcelana, el cuarzo, el vidrio y la mica.

Niveles de energía

Para que tenga lugar la conducción, ha de haber un movimiento de electrones. En la teoría atómica se explican las propiedades eléctricas de los elementos por el concepto de las bandas de energía.

Los electrones de la órbita exterior de un átomo pueden ser desplazados de ella con la menor cantidad de energía y se llaman electrones de valencia. Estos electrones tienen unos niveles o bandas de energía definidas (vea la figura de junto) y la conductividad de un elemento está determinada por la energía necesaria para desplazar sus electrones de valencia desde su nivel normal de energía, o banda de valencia, hasta el nivel más elevado, llamado banda de energía o de conducción. La distancia que recorre un electrón en su camino desde la banda de valencia hasta la banda de energía varía con cada tipo de átomo. La laguna de energía que separa las bandas de conducción y de valencia en un aislador es muy grande, y es muy difícil para un electrón de valencia el alcanzar la banda de energía. En un conductor las bandas de energía y de valencia están solapadas y los electrones de valencia son válidos para la conducción. En un semiconductor la laguna de energía es muy pequeña, y la energía térmica de los electrones de valencia a la temperatura ambiente es suficiente para permitir una conducción apreciable. Dado que un electrón no puede permanecer en el espacio situado entre las bandas de valencia y de energía, esta región se llama zona prohibida.

FASE III

HERRAMIENTAS MATEMATICAS Y CONCEPTOS FISICOS

1. HERRAMIENTAS MATEMATICAS

 Distribuciones aleatorias

 Ecuación de Schrödinger

 Funciones Trigonométricas

 Derivadas

 Constante de Planck

FISICOS:

 Frecuencia

 Periodo

 Partícula

 Onda

 Efecto fotoeléctrico y cuantización de la energía

 Estructura atómica e iones

 Cinemática del electrón en semiconductores

 Uniones

 Cristalografía

 Dopado semiconductores

 Pozos y barreras de potencial

Las herramientas con las cuales he estado familiarizada son: Ecuaciones de Schrödinger, Funciones trigonométricas, Derivadas, Constantes de plank; físicas: Frecuencia, por ende periodo, partícula, ondas y efecto fotoeléctrico, de la lista vista existe algunas las cuales aún no posee conocimiento como ejemplo cristalografía.

2. DISPOSITIVIVOS SEMICONDUCTORES QUE SE USAN EN ELECTRONICA

SEMICONDUCTORES

Los materiales semiconductores El diodo, el transistor y muchos otros componentes electrónicos están hechos con materiales semiconductores. Los más utilizados son el silicio y el germanio.

Semiconductores de tipo P. Se obtienen al añadir impurezas como el boro o el indio. Tienen gran tendencia a captar electrones.

Semiconductores de tipo N. Se obtienen al añadir impurezas como el fósforo y el antimonio. Tienen gran tendencia a captar electrones.

 Un diodo es un componente electrónico que permite el paso de la corriente en un sentido y lo impide en el contrario. Está provisto de dos terminales, el ánodo (+) y el cátodo (-) y, por lo general conduce la corriente en el sentido ánodo- cátodo.

La polarización directa se produce cuando el polo positivo del generador eléctrico se une al ánodo del diodo y el polo negativo se une al cátodo. En este caso el diodo se comporta como un conductor y deja pasar la corriente.

La polarización inversa se produce cuando el polo positivo del generador eléctrico se une al cátodo del diodo y el negativo al ánodo. En este caso el diodo no permite el paso de la corriente.

 Diodos LED. Es un tipo de diodo que convierte en luz toda la energía eléctrica que le llega, sin calentarse. Los diodos LED están polarizados es decir solo iluminan cuando están conectados correctamente al generador de corriente. Los LED funcionan con intensidad comprendida entre 10 y 20 mA. Para evitar que se fundan suelen conectarse en serie con una resistencia.

 Un transistor es un componente eléctrico que se emplea para dos cosas: Pueden utilizarse como interruptor, bloqueando o dejando pasar corriente a través del colector. Puede utilizarse como amplificador. Consta de tres partes: el emisor, el colector y la base.

Un semiconductor es un componente que no es directamente un conductor de corriente, pero tampoco es un aislante. En un conductor la corriente es debida al movimiento de las cargas negativas (electrones). En los semiconductores se producen corrientes producidas por el movimiento de electrones como de las cargas positivas (huecos). Los semiconductores son aquellos elementos perteneciente al grupo IV de la Tabla Periódica (Silicio, Germanio, etc. Generalmente a estos se le introducen átomos de otros elementos, denominados impurezas, de forma que la corriente se deba primordialmente a los electrones o a los huecos, dependiendo de la impureza introducida. Otra característica que los diferencia se refiere a su resistividad, estando ésta comprendida entre la de los metales y la de los aislantes.

Disposición esquemática de los átomos de un semiconductor de silicio puro, No existen electrones ni huecos libres

La disposición esquemática de los átomos para un semiconductor de silicio podemos observarla en la figura de arriba, Las regiones sombreadas representan la carga positiva neta de los núcleos y los puntos negros son los electrones, menos unidos a los mismos.

La fuerza que mantiene unidos a los átomos entre sí es el resultado del hecho de que los electrones de conducción de cada uno de ellos, son compartidos por los cuatro átomos vecinos.

A temperaturas bajas la estructura normal es la que se muestra en la figura de arriba en la cual no se observa ningún electrón ni hueco libre y por tanto el semiconductor se comporta como un aislante.

Estos cuatro electrones se encuentran formando uniones covalentes con otros átomos vecinos para así formal un cristal, que es la forma que se los encuentra en la naturaleza. Si esta estructura se encuentra a una temperatura muy baja o en el cero absoluto, el cristal tendrá tan poca energía que no hará posible la conducción eléctrica. Al aumentar la temperatura (a temperatura ambiente por ejemplo) ciertos electrones adquieren suficiente energía para romper el enlace del que forman parte y "saltar" al siguiente orbital. Esto provoca la formación de un espacio vacío, que por carencia de electrones, posee carga positiva, a este espacio se lo denomina hueco.

El aumento de temperatura rompe algunas uniones entre átomos liberándose un cierto número de electrones.

En cambio, a la temperatura ambiente (20-25 grados C.) algunas de las fuertes uniones entre los átomos se rompen debido al calentamiento del semiconductor y como consecuencia de ello algunos de los electrones pasan a ser libres. En la figura siguiente se representa esta situación. La ausencia del electrón que pertenecía a la unión de dos átomos de silicio se representa por un círculo,

La forma en que los huecos contribuyen a la corriente, se detalla seguidamente Cuando un electrón puede vencer la fuerza que le mantiene ligado al núcleo y por tanto abandona su posición, aparece un hueco, y le resulta relativamente fácil al electrón del átomo vecino dejar su lugar para llenar este hueco.

Este electrón que deja su sitio para llenar un hueco, deja a su vez otro hueco en su posición inicial, De esta manera el hueco contribuye a la corriente lo mismo que el electrón, con una trayectoria de sentido opuesto a la de éste.

Niveles De Energía

Un cristal está formado por un conjunto de átomos muy próximos entre sí dispuestos espacialmente de forma ordenada de acuerdo con un determinado patrón geométrico. La gran proximidad entre los átomos del cristal hace que los electrones de su última capa sufran la interacción de los átomos vecinos.

El nivel energético de cada uno de estos electrones puede estar situado en la "banda de valencia" o en la "banda de

conducción" del cristal. Un electrón que ocupe un nivel dentro de la banda de valencia está ligado a un átomo del cristal y no puede moverse libremente por él mientras que si el nivel ocupado pertenece a la banda de conducción, el electrón puede moverse libremente por todo el cristal, pudiendo

...

Descargar como (para miembros actualizados) txt (48 Kb)
Leer 30 páginas más »
Disponible sólo en Clubensayos.com