ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conductores


Enviado por   •  13 de Octubre de 2012  •  4.901 Palabras (20 Páginas)  •  272 Visitas

Página 1 de 20

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNAD

APREHENCIENTE:

FABRICIO ALEJANDRO RODRIGUEZ QUIÑONEZ

CURSO:

FÍSICA DE SEMICONDUCTORES

PROGRAMA:

INGENIERIA DE TELECOMUNICACIONES

TUTOR:

ORLANDO HARKER

CÓDIGO CURSO:

299002_12

INTRODUCCIÓN

• Con este ejercicio deseamos identificar las unidades, compromisos, actividades y conceptos más importantes de la física de semiconductores los cuales debemos tener conocimiento de ellos en el lapso de tiempo a desarrollarse este curso.

• Considero de mucha importancia este principio, debido a la naturaleza del mismo, en este trabajo de describe de la manera más practica todas las características del mismo, aunque a veces se piense que no es necesario, puede servir en muchas ocasiones para delatar algo, o simplemente para justificarlo.

El Principio de Incertidumbre de Heisenberg es sin duda algunos unos de los enigmas de la historia, debido a que este menciona que “Lo que estudias, lo cambias”, entonces, si esto es cierto, ¿Qué tanto a cambiado la realidad de lo que nos narra la historia?

OBJETIVOS

• Uno de los objetivos de este curso es el de entender que tan coherencia existe entre la posición, energía, y velocidad de un electrón en un átomo al este ser medida por la unidad más pequeña de medida para estos como lo es el fotón.

• El objetivo fundamental es que nosotros como estudiantes podamos identificar, comprender e interiorizar las temáticas que cubren la unidad I, con el fin de adquirir conocimientos físico cuánticos que nos den capacidad de resolver problemas sobre física de semiconductores.

1. Los estudiantes buscarán las ecuaciones exactas que están relacionadas con los siguientes conceptos:

a.) Principio de incertidumbre (versión de posición y versión de energía)

Principio de Incertidumbre

Heisenberg había presentado su propio modelo de átomo renunciando a todo intento de describir el átomo como un compuesto de partículas y ondas. Pensó que estaba condenado al fracaso cualquier intento de establecer analogías entre la estructura atómica y la estructura del mundo. Prefirió describir los niveles de energía u órbitas de electrones en términos numéricos puros, sin la menor traza de esquemas. Como quiera que usó un artificio matemático denominado “matriz” para manipular sus números, el sistema se denominó “mecánica de matriz”.

Heisenberg recibió el premio Nobel de Física en 1932 por sus aportaciones a la mecánica ondulatoria de Schrödinger, pues esta última pareció tan útil como las abstracciones de Heisenberg, y siempre es difícil, incluso para un físico, desistir de representar gráficamente las propias ideas.

Una vez presentada la mecánica matriz (para dar otro salto atrás en el tiempo) Heisenberg pasó a considerar un segundo problema: cómo describir la posición de la partícula. ¿Cuál es el procedimiento indicado para determinar dónde está una partícula? La respuesta obvia es ésta: observarla. Pues bien, imaginemos un microscopio que pueda hacer visible un electrón. Si lo queremos ver debemos proyectar una luz o alguna especie de radiación apropiada sobre él. Pero un electrón es tan pequeño, que bastaría un solo fotón de luz para hacerle cambiar de posición apenas lo tocara. Y en el preciso instante de medir su posición, alteraríamos ésta.

Aquí nuestro artificio medidor es por lo menos tan grande como el objeto que medimos; y no existe ningún agente medidor más pequeño que el electrón. En consecuencia, nuestra medición debe surtir, sin duda, un efecto nada desdeñable, un efecto más bien decisivo en el objeto medido. Podríamos detener el electrón y determinar así su posición en un momento dado. Pero si lo hiciéramos, no sabríamos cuál es su movimiento ni su velocidad. Por otra parte, podríamos gobernar su velocidad, pero entonces no podríamos fijar su posición en un momento dado.

Heisenberg demostró que no nos será posible idear un método para localizar la posición de la partícula subatómica mientras no estemos dispuestos a aceptar la incertidumbre absoluta respecto a su posición exacta. Es un imposible calcular ambos datos con exactitud al mismo tiempo.

Siendo así, no podrá haber una ausencia completa de energía ni en el cero absoluto siquiera. Si la energía alcanzara el punto cero y las partículas quedaran totalmente inmóviles, sólo sería necesario determinar su posición, puesto que la velocidad equivaldría a cero. Por tanto, sería de esperar que subsistiera alguna “energía residual del punto cero”, incluso en el cero absoluto, para mantener las partículas en movimiento y también, por así decirlo, nuestra incertidumbre. Esa energía “punto cero” es lo que no se puede eliminar, lo que basta para mantener liquido el helio incluso en el cero absoluto.

En 1930, Einstein demostró que el principio de incertidumbre (donde se afirma la imposibilidad de reducir el error en la posición sin incrementar el error en el momento) implicaba también la imposibilidad de reducir el error en la medición de energía sin acrecentar la incertidumbre del tiempo

...

Descargar como (para miembros actualizados)  txt (31.3 Kb)  
Leer 19 páginas más »
Disponible sólo en Clubensayos.com