ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conductores Y Aislantes


Enviado por   •  21 de Octubre de 2012  •  2.442 Palabras (10 Páginas)  •  1.189 Visitas

Página 1 de 10

INTRODUCCIÓN

El presente informe tiene como objetivo principal dar a conocer algunos aspectos de potencial eléctrico, aplicando procedimientos matemáticos en la resolución de los problemas planteados.

Incentivando de alguna manera el análisis y/o razonamiento matemático en los estudiantes unefistas.

En ese sentido, se describen conceptos y definiciones de potencial eléctrico, potencial eléctrico debido a una carga puntual, potencial eléctrico debido a un grupo de cargas puntuales. Además de ejercicios propuestos y resueltos, de manera tal, que se internalice lo investigado a través de esta Triple AAA.

POTENCIAL ELÉCTRICO

Definimos el potencial eléctrico como la energía potencial eléctrica por unidad de carga, así

El potencial puede ser negativo o positivo dependiendo del signo de la carga. La unidad internacional para el potencial eléctrico es el voltio:

Para una carga puntual el potencial es

y para una distribución continua de carga

Es posible determinar el campo eléctrico si el potencial eléctrico es conocido. Veamos.

esto es,

donde es la componente del campo eléctrico paralela al desplazamiento. Así,

Esto quiere decir que el campo eléctrico apunta en la dirección que disminuye el potencial. Si el potencial depende en general de las coordenadas rectangulares , entonces

y podemos calcular las componentes rectangulares del campo eléctrico a través de

También para reforzar lo antes dicho, se puede definir en un punto en un espacio en donde existe un campo eléctrico, es el trabajo necesario para llevar una carga de prueba de desde un cualquier infinitamente distante (punto de referencia donde se considera que el potencial eléctrico tiene valor cero) al punto de consideración dividido entre el valor de la carga transportada. Es importante notar que dividir la carga entre la carga transportada hace que el Potencial Eléctrico no dependa de la magnitud de la carga transportada.

El potencial eléctrico generado a una distancia r de una carga puntual Q se puede determinar de acuerdo a la formula

V=k

Como se puede observar, el potencial eléctrico y la energía potencial eléctrica guardan una relación similar a la que existe entre el campo eléctrico y la fuerza eléctrica. El campo magnético indica la fuerza eléctrica para una unidad de carga eléctrica, y el potencial eléctrico indica la energía potencial para la unidad de carga eléctrica. Al igual que la energía potencial, el potencial eléctrico es un escalar.

El potencial eléctrico es muy importante cuando se analizan circuitos eléctricos, ya que en la medida en que haya una diferencia de potencial entre dos puntos, es decir, que el voltaje en esos puntos sea diferente, se tendrá flujo de corriente eléctrica del punto de mayor potencial al punto de menor potencial eléctrico.

Las líneas formadas por puntos de igual potencial eléctrico se conocen como líneas equipotenciales. Estas líneas son perpendiculares a las líneas del campo eléctrico.

ENERGÍA POTENCIAL ELÉCTRICA

La fuerzas de atracción entre dos masas es conservativa, del mismo modo se puede demostrar que la fuerza de interacción entre cargas es conservativa.

El trabajo de una fuerza conservativa, es igual a la diferencia entre el valor inicial y el valor final de una función que solamente depende de las coordenadas que denominamos energía potencial.

El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria.

dW=F•dl=F•dl•cosθ=F•dr.

donde dr es el desplazamiento infinitesimal de la partícula cargada q en la dirección radial.

Para calcular el trabajo total, integramos entre la posición inicial A, distante rA del centro de fuerzas y la posición final B, distante rB del centro fijo de fuerzas.

El trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. La fuerza de atracción F, que ejerce la carga fija Q sobre la carga q es conservativa. La fórmula de la energía potencial es

El nivel cero de energía potencial se ha establecido en el infinito, para r=∞, Ep=0

El hecho de que la fuerza de atracción sea conservativa, implica que la energía total (cinética más potencial) de la partícula es constante, en cualquier punto de la trayectoria.

FORMA DIFERENCIAL DEL POTENCIAL ELÉCTRICO

Recordamos que el potencial eléctrico puede ser expresado como:

También recordemos que el diferencial de una función se puede expresar como:

por lo que un diferencial de un potencial eléctrico puede ser expresado como:

Si sacamos el diferencial al potencial en la ecuación que relaciona con el campo eléctrico tendremos:

pero y por último si consideramos que para tenemos un desplazamiento pequeño tendremos:

EL POTENCIAL ELÉCTRICO NECESARIO PARA DESPLAZAR UNA CARGA PUNTUAL DESDE UN PUNTO B A UN PUNTO A

Recordemos primero que el campo de una carga puntual esta determinado en forma radial como se muestra a continuación, sin embargo, recordemos que el hecho de haber tomado un campo conservativo le resta importancia a ese hecho.

sustituyendo en la ecuación que define al campo eléctrico tendríamos:

Obsérvese que se ha tomado el diferencial de línea de las coordenadas esféricas.

EL POTENCIAL DE UNA DISTRIBUCIÓN DE CARGA

Cuando existe una distribución de carga en un volumen finito con una densidad de carga conocida entonces puede determinarse el potencial en un punto externo, esto por que la definición de potencial involucra el campo eléctrico.

Si analizamos el potencial originado por cada diferencial de carga tendremos:

Finalmente podemos integrar sobre todo el volumen para obtener:

Nótese que la variable R es la distancia a al punto con respecto a cada diferencial de volumen en cada punto del objeto cargado y por tanto depende de las coordenadas, lo cual implica el hecho de no poder sacarlo de la integral. No deberá de confundir la variable r con la variable R.

De manera similar podemos encontrar el potencial eléctrico de cualquier distribución, bien sea de línea o de superficie y que puede ser expresados como:

Para configuraciones de superficie:

Para configuraciones de línea:

Donde es la densidad superficial, es la densidad lineal.

APLICACIONES

El campo eléctrico se utiliza en todos los sistemas de comunicaciones electrónicos. Su importancia es fundamental en la óptica, en el diseño de conductores. Equipos como las fotocopiadoras, Osciloscopios y eliminadores de emisiones de contaminantes en chimeneas aplican más directamente los fenómenos relacionados con el campo eléctrico.

EJERCICIOS RESUELTOS

Ejercicio 1

Determinar el valor del potencial eléctrico creado por una carga puntual q1=12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura.

Resolución: Para dar respuesta a lo solicitado debemos aplicar el cálculo del potencial en un punto debido a una carga puntual cuya expresión es

y por lo tanto el valor sería

el potencial es una magnitud escalar, por lo tanto tan sólo debe ser indicado su signo y su valor numérico.

Respuesta: El potencial en A vale + 1.080 V

Ejercicio 2

Dos cargas puntuales q1=12 x 10-9 C y q2=-12 x 10 -9 C están separadas 10 cm. como muestra la figura. Calcular la diferencia de potencial entre los puntos ab, bc y ac.

Resolución:

Para poder hallar la diferencia de potencial entre puntos, debemos primero hallar el potencial en cada punto debido al sistema de cargas planteado

 Potencial en punto a: El potencial en a es debido a la acción de dos cargas puntuales q1 y q2 por lo tanto deberemos calcular cada uno de dichos potenciales y establecer la diferencia. como el potencial en un punto debido a una carga puntual se calcula como ya vimos en el ejercicio anterior como entonces deberemos repetir este cálculo para cada una de las cargas.

En consecuencia por lo que como se observa el resultado corresponde a la diferencia entre el potencial positivo creado por la carga q1 y el potencial negativo creado por la carga q2. (potencial de q1= + 1.800 V y potencial de q2 = - 2.700 V de allí surgen la diferencia que es a favor del potencial positivo en -900 V).

 Potencial en punto b : Repetimos lo establecido para el punto a simplemente que ahora debemos calcular las distancias para el punto b por lo que la expresión nos queda como se observa el resultado corresponde a la diferencia entre el potencial positivo creado por la carga q1 y el potencial negativo creado por la carga q2. (potencial de q1= + 2.700 V y potencial de q2 = - 771 V de allí surgen la diferencia que es a favor del potencial positivo en 1.929 V).

 Potencial en punto c: En el punto c no es necesario realizar el cálculo numérico dado que como las distancias entre c y las cargas son iguales y las cargas son iguales y de signos contrarios, los potenciales que provocan son de igual valor y signo opuesto, por lo que el potencial en c vale 0 (Vc=0).

 Cálculo de los potenciales solicitados

Vab= Vb-Va= 1.929 V - (-900 V) = + 2.829 V

Vbc= Vc-Vb= 0 V - 1.929 V = - 1.929 V

Vac=Vc-Va= 0 V - (-900 V) = + 900 V

Respuesta:

Vab =+ 2.829 V Vbc=- 1.929 V Vac=+ 900 V

Ejercicio 3

Sobre una circunferencia tenemos un arco de 90º situado en el primer cuadrante en el que hay una distribución lineal de carga λ, ¿qué campo creará en el centro de la circunferencia de radio a?.

Ejercicio 4

Calcular la diferencia de potencial entre O y P de una distribución de cargas formada por q en (1,0) y -q en (0,1). Explicar el resultado obtenido.

el resultado obtenido indica que los dos puntos O y P están sobre la línea equipotencial V=0. Esto no implica que el campo en O y en P sea nulo - que no lo es-. La situación se refleja en la siguiente figura, en la que se debe observar que las líneas equipotenciales siempre son perpendiculares a las líneas de campo eléctrico.

En casos de distribución continua de carga el potencial eléctrico se calcula mediante la expresión:

Ejercicio 6

Una carga Q está distribuida uniformemente sobre una barra delgada de longitud L. Calcular el potencial en un punto P, situado a una distancia x a la derecha de la barra, como se muestra en la figura.

si suponemos una densidad lineal de carga λ,

Ejercicio 7

Calcular el potencial eléctrico en P(0,0,3) debido a una carga eléctrica distribuida uniformemente entre 0 y 3π/2, y con densidad λ , sobre la curva x2+y2=16.

La curva x2+y2=16 es una circunferencia en el plano XY de radio R=4, por tanto, la situación planteada es:

CONCLUSIÓN

En síntesis se tiene que potencial eléctrico El Potencial Eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica (ley de Coulomb) para mover una carga unitaria “q” desde ese punto hasta el infinito, donde el potencial es cero. Dicho de otra forma es el trabajo que debe realizar una fuerza externa para traer una carga unitaria “q” desde el infinito hasta el punto considerado en contra de la fuerza eléctrica.

Y que cuando una carga de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba localizada a una distancia r de una carga q.

De manera equivalente, el potencial eléctrico es = Trabajo eléctrico y energía potencial eléctrica Considérese una carga puntual q en presencia de un campo eléctrico. La carga experimentará una fuerza eléctrica.

Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico. Esta fuerza deberá tener la misma magnitud que la primera.

Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro. De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza.

Teniendo en cuanta que, en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento. Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.

Por otra parte, si el trabajo que se realiza en cualquier trayectoria cerrada es igual a cero, entonces se dice que se está en presencia de un campo eléctrico conservativo.

Es importante destacar que el trabajo puede ser positivo, negativo o nulo. En estos casos el potencial eléctrico en B será respectivamente mayor, menor o igual que el potencial eléctrico en A. La unidad en el SI para la diferencia de potencial que se deduce de la ecuación anterior es Joule/Coulomb y se representa mediante una nueva unidad, el voltio, esto es: 1 voltio = 1 Joule/Coulomb. Un electrón volt (eV) es la energía adquirida para un electrón al moverse a través de una diferencia de potencial de 1V, 1 eV = 1,6×10^−19 J. Algunas veces se necesitan unidades mayores de energía, y se usan los kiloelectrón volts (keV), megaelectrón volts (MeV) y los gigaelectrón volts (GeV). (1 keV=10^3 eV, 1 MeV = 10^6 eV, y 1 GeV = 10^9 eV). Aplicando esta definición a la teoría de circuitos y desde un punto de vista más intuitivo, se puede decir que el potencial eléctrico en un punto de un circuito representa la energía que posee cada unidad de carga al paso por dicho punto. Así, si dicha unidad de carga recorre un circuito constituyendóse en corriente eléctrica, ésta irá perdiendo su energía (potencial o voltaje) a medida que atraviesa los diferentes componentes del mismo. Obviamente, la energía perdida por cada unidad de carga se manifestará como trabajo realizado en dicho circuito (calentamiento en una resistencia, luz en una lámpara, movimiento en un motor, etc.). Por el contrario, esta energía perdida se recupera al paso por fuentes generadoras de tensión. Es conveniente distinguir entre potencial eléctrico en un punto (energía por unidad de carga situada en ese punto) y corriente eléctrica (número de cargas que atraviesan dicho punto por segundo). Usualmente se escoge el punto A a una gran distancia (en rigor el infinito) de toda carga y el potencial eléctrico a esta distancia infinita recibe arbitrariamente el valor cero.

BIBLIOGRAFIA

 POTENCIAL ELÉCTRICO

http://www.angelfire.com/empire/seigfrid/Potencialelectrico.html

 POTENCIAL ELÉCTRICO

http://148.216.10.84/ELECTRO/potencial_electrico.htm#Forma%20diferencial%20del%20potencial%20el%E9ctrico

...

Descargar como  txt (15 Kb)  
Leer 9 páginas más »