Una matriz es una tabla ordenada de escalares aij
24 de Noviembre de 2013
366 Palabras (2 Páginas)276 Visitas
Una matriz es una tabla ordenada de escalares aij de la forma La matriz anterior se denota también por (aij), i =1, ..., m, j =1, ..., n, o simplemente por (aij). Los términos horizontales son las filas de la matriz y los verticales son sus columnas. Una matriz con m filas y n columnas se denomina matriz m por n, o matriz m ´ n. Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ... Ejemplo:donde sus filas son (1, -3, 4) y (0, 5, -2) y sus TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en: Matrices cuadradas Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ´ n es de orden n y se denomina matriz n-cuadrada. Ejemplo: Sean las matrices Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. Matriz identidad Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La traza de A, escrito tr A, es la suma de los elementos diagonales. La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como matriz identidad (o unidad). Para cualquier matriz A, A· I = I ·A = A. Matrices triangulares Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas bajo la diagonal principal son iguales a cero. Así pues, las matricesson matrices triangulares superiores de órdenes 2, 3 y 4. Matrices diagonales Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22, ..., dnn ). Por ejemplo, son matrices diagonales que pueden representarse, respectivamente, por diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
...