Invitar A Nuevos Amigos
wuissanchez6 de Mayo de 2014
8.100 Palabras (33 Páginas)190 Visitas
biologia
Las leyes de Mendel[editar]
Las tres leyes de Mendel explican y predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo. Frecuentemente se han descrito como «leyes para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde este punto de vista, de transmisión de caracteres, estrictamente hablando no correspondería considerar la primera ley de Mendel (Ley de la uniformidad). Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pero la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana en ocasiones no se considera una ley de Mendel. Así pues, hay tres leyes de Mendel que explican los caracteres de la descendencia de dos individuos, pero solo son dos las leyes mendelianas de transmisión: la Ley de segregación de caracteres independientes (2ª ley, que, si no se tiene en cuenta la ley de uniformidad, es descrita como 1ª Ley) y la Ley de la herencia independiente de caracteres (3ª ley, en ocasiones descrita como 2ª Ley).
1ª Ley de Mendel: Ley de la uniformidad de los híbridos de la primera generación filial.[editar]
Establece que si se cruzan dos razas puras (una con genotipo dominante y otra con genotipo recesivo) para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí fenotípica y genotípicamente, e iguales fenotípicamente a uno de los progenitores (de genotipo dominante), independientemente de la dirección del cruzamiento. Expresado con letras mayúsculas las dominantes (A = amarillo) y minúsculas las recesivas (a = verde), se representaría así: AA + aa = Aa, Aa, Aa, Aa. En pocas palabras, existen factores para cada carácter los cuales se separan cuando se forman los gametos y se vuelven a unir cuando ocurre la fecundación.
2ª Ley de Mendel: Ley de la segregación de los caracteres en la segunda generación filial.[editar]
Esta ley establece que durante la formación de los gametos, cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1). Aa + Aa = AA + Aa + Aa + aa
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno de cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigotos o heterocigotos.
En palabras del propio Mendel:6
"Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de éstos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número.
Gregor Mendel
3ª Ley de Mendel: Ley de la independencia de los caracteres hereditarios.[editar]
En ocasiones es descrita como la 2ª Ley. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por lo tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (es decir, que están en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. En este caso la descendencia sigue las proporciones.Representándolo con letras, de padres con dos características AALL y aall (donde cada letra representa una característica y la dominancia por la mayúscula o minúscula), por entrecruzamiento de razas puras (1era Ley), aplicada a dos rasgos, resultarían los siguientes gametos: AL + al =AL, Al, aL, al. Al intercambiar entre estos cuatro gametos, se obtiene la proporción AALL, AALl, AAlL, AAll, AaLL, AaLl, AalL, Aall, aALL, aALl, aAlL, aAll, aaLL, aaLl, aalL, aall.
Como conclusión tenemos: 9 con "A" y "L" dominantes, tres con "a" y "L", 3 con "A" y "l" y 1 con genes recesivos "aall"
En palabras del propio Mendel:
Por tanto, no hay duda de que a todos los caracteres que intervinieron en los experimentos se aplica el principio de que la descendencia de los híbridos en que se combinan varios caracteres esenciales diferentes, presenta los términos de una serie de combinaciones, que resulta de la reunión de las series de desarrollo de cada pareja de caracteres diferenciales.
Gregor Mendel
Patrones de herencia mendeliana[editar]
Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendencia, los dominantes y los recesivos, pero existe otro factor a tener en cuenta en organismos dioicos y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X (XX) mientras los masculinos tienen un cromosoma X y uno Y (XY), con lo cual quedan conformados cuatro modos o "patrones" según los cuales se puede trasmitir una mutación simple:
• Gen dominante ubicado en un autosoma (herencia autosómica dominante).
• Gen recesivo ubicado en un autosoma (herencia autosómica recesiva).
• Gen dominante situado en el cromosoma X (herencia dominante ligada al cromosoma X).
• Gen recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X).
Fenómenos que alteran las segregaciones mendelianas[editar]
Herencia ligada al sexo[editar]
Es la herencia relacionada con el par de cromosomas sexuales. El cromosoma X porta numerosos genes, pero el cromosoma Y tan solo unos pocos y la mayoría en relación con la masculinidad. El cromosoma X es común para ambos sexos, pero solo el masculino posee cromosoma Y.
Herencias influidas por el sexo y limitadas al sexo[editar]
En las herencias limitadas al sexo pueden estar comprometidos mutaciones de genes con cromosomas autosómicos cuya expresión solamente tiene lugar en órganos del aparato reproductor masculino o femenino. Un ejemplo es el defecto congénito septum vaginal transverso, de herencia autosómica recesiva, o la deficiencia de 5 α reductasa que convierte a la testosterona en dihidrotestosterona que actúa en la diferenciación de los genitales externos masculinos, por lo que su ausencia simula genitales femeninos cuando el niño nace.
Una mutación puede estar influida por el sexo, esto puede deberse al efecto del metabolismo endocrino que diferencia a machos y hembras. Por ejemplo, en humanos la calvicie se debe al efecto de un gen que se expresa como autosómico dominante, sin embargo en una familia con la segregación de este gen solo los hombres padecen de calvicie y las mujeres tendrán su cabello más escaso después de la menopausia. Otro ejemplo puede ser la deficiencia de la enzima 21 hidroxilasa que interviene en el metabolismo de los glucocorticoides. Cuando esta enzima está ausente, la síntesis de glucocorticoides se desplaza hacia la formación de testosterona y esta hormona está comprometida en la embriogénesis de los genitales externos del varón, por lo que su presencia anormal en el desarrollo de un feto femenino produce la masculinización de los genitales femeninos, mientras que en el caso de un feto varón, solo incrementa el desarrollo de los masculinos. Una anormalidad de este tipo, permitirá sospechar un diagnóstico clínico más rápidamente en una niña, basado en el examen de los genitales del recién nacido, que en un niño.
Estructura génica del cromosoma Y[editar]
Por tener un solo cromosoma X, a los individuos de sexo masculino no se les pueden aplicar los términos "homocigoto" o "heterocigoto" para genes ubicados en este cromosoma y ausentes en el cromosoma Y. Ya sean genes que expresen el carácter dominante o recesivo, si están situados en el cromosoma X, los varones siempre lo expresarán y al individuo que lo porta se le denomina hemicigoto.
De lo anterior se deduce que, puesto que las hembras tienen un solo tipo de cromosoma sexual, el X, sus gametos siempre tendrán la dotación cromosómica 23,X, mientras los masculinos pueden portar una X, dando lugar a un individuo femenino (XX), o una Y, con lo que se originaría un individuo masculino (XY). Debido a esto se dice que las mujeres son homogaméticas (todos sus gametos tienen igual constitución) y que los hombres son heterogaméticos (tienen gametos 23,X y 23,Y).
Sistema de compensación de dosis génica del cromosoma X[editar]
En insectos, tal como se ha visto en Drosophila, se descubrió la existencia de un gen que ejerce de compensador de dosis, cuando se encuentra en dosis única (como ocurre en machos) produce la activación de la expresión de los genes del cromosoma X. En mamíferos no se ha encontrado un gen con función equivalente.
Lionización[editar]
La lionización o inactivacion del cromosoma X se produce porque, a diferencia
...