¡Pídele Energía A Los Amigos!
Maryuzcategui17 de Octubre de 2013
538 Palabras (3 Páginas)316 Visitas
Distancia entre Dos Puntos
Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas.
Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es 4 + 5 = 9 unidades.
Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas.
Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación:
Para demostrar esta relación se deben ubicar los puntos A(x1,y1) y B(x2,y2) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa AB y emplear el teorema de Pitágoras.
Ejemplo: Calcula la distancia entre los puntos A (7,5) y B (4,1)
d = 5 unidades
Punto medio de un segmento
Punto medio o punto equidistante, en matemática, es el punto que se encuentra a la misma distancia de cualquiera de los extremos.
Si es un segmento acotado, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento.
Pendiente de una Recta
La pendiente de una recta en un sistema de representación rectangular (de un plano cartesiano), suele estar representada por la letra, y está definida como la diferencia en el eje Y dividido por la diferencia en el eje X para dos puntos distintos en una recta.
Rectas paralelas y perpendiculares
Las rectas paralelas son aquellas rectas que se encuentran en un mismo plano, presentan la misma pendiente y que no presentan ningún punto en común, esto significa que no se cruzan, ni tocan y ni siquiera se van a cruzar sus prolongaciones. Uno de los ejemplos más populares es el de las vías de un tren. Dos rectas que se encuentran en el mismo plano son perpendiculares cuando forman cuatro ángulos rectos. En el caso de las semirrectas, la perpendicularidad aparece cuando se conforman ángulos rectos, por lo general con el mismo punto de origen. Los planos y semiplanos, por último, son perpendiculares en los casos en que se forman cuatro ángulos de diedros de 90º.
Ecuación general de la recta
Partiendo de la ecuación continúa la recta
Y quitando denominadores se obtiene:
Trasponiendo términos:
Haciendo
Se obtiene
Ecuación general de la circunferencia
La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro.
Elevando al cuadrado obtenemos la ecuación:
Si desarrollamos:
y realizamos estos cambios:
Obtenemos otra forma de escribir la ecuación:
Donde el centro es:
y el radio cumple la relación:
Ecuación general de la parábola
Supongamos que el vértice de una parábola cuando su eje focal es paralelo al eje Y se halla situado en el punto (h,k).
En este caso tendremos que trasladar el vértice al nuevo punto quedándonos establecida la fórmula:
Hacemos operaciones:
Damos valores a:
Sustituyendo estos valores en (I) obtenemos la ecuación general de la parábola:
Cuando su eje focal es paralelo al eje X se halla situado en el punto (h, k) la fórmula es:
...