Representación De Funciones Mediante La Serie De Taylor
msjs2 de Diciembre de 2012
262 Palabras (2 Páginas)2.491 Visitas
4.6 Representación de funciones mediante la serie de Taylor
DEFINICIÒN
La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos ha, es la serie de potencias:
Que puede ser escrito de una manera más compacta como
Donde n! es el factorial de n y f (n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia f y (x − a)0 y 0! son ambos definidos como uno.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
A continuación se enumeran algunas series de Taylor de funciones básicas. Todos los desarrollos son también válidos para valores complejos de x.
Función exponencial y logaritmo natural
Serie geométrica
Teorema del binomio
Funciones trigonométrica
Donde Bs son los Números de Bernoulli.
Funciones hiperbólicas
Función W de Lambert
Los números Bk que aparecen en los desarrollos de tan(x) y tanh(x) son Números de Bernoulli. Los valores C(α,n) del desarrollo del binomio son los coeficientes binomiales. Los Ek del desarrollo de sec (x) son Números de Euler.
...