Teorema De Pitagoras
Selenefr19 de Marzo de 2013
608 Palabras (3 Páginas)438 Visitas
Teorema de Pitágoras
Hace años, un hombre llamado Pitágoras descubrió un hecho asombroso sobre triángulos:
Si el triángulo tiene un ángulo recto (90°)...
... y pones un cuadrado sobre cada uno de sus lados, entonces...
... ¡el cuadrado más grande tiene exactamente la misma área que los otros dos cuadrados juntos!
El lado más largo del triángulo se llama "hipotenusa", así que la definición formal es:
En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (llamamos "triángulo rectángulo" a un triángulo con un ángulo recto)
Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²):
a2 + b2 = c2
¿Seguro... ?
Veamos si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulo recto, así que la fórmula debería funcionar.
Veamos si las áreas son la misma:
32 + 42 = 52
Calculando obtenemos:
9 + 16 = 25
¡sí, funciona!
¿Por qué es útil esto?
Si sabemos las longitudes de dos lados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. (¡Pero recuerda que sólo funciona en triángulos rectángulos!)
Otras demostraciones del teorema de Pitágoras
TEOREMA DE PITÁGORAS
En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de loscatetos.
a2 + b2 = c2
Cada uno de los sumandos, representa el área de un cuadrado de lado, a, b, c. Con lo que la expresión anterior, en términos de áreas se expresa en la forma siguiente:
El área del cuadrado construido sobre la hipotenusa de un triángulo rectángulo, es igual a la suma de las áreas de los cuadrados construidos sobre los catetos.
Teorema de Pitágoras generalizado
Si en vez de construir un cuadrado, sobre cada uno de los lados de un triángulo rectángulo, construimos otra figura, ¿seguirá siendo cierto, que el área de la figura construida sobre la hipotenusa es igual a la suma de las áreas de las figuras semejantes construidas sobre los catetos?
(Pinchando en los dibujos siguientes se accede a la comprobación numérica en las figuras que se representan)
DEMOSTRACIONES DEL TEOREMA DE PITÁGORAS
A lo largo de la historia han sido muchas las demostraciones y pruebas que matemáticos y amantes de las matemáticas han dado sobre este teorema. Se reproducen a continuación algunas de las más conocidas.
DEMOSTRACIONES GEOMÉTRICAS
PITÁGORAS.
Una de las demostraciones geométricas mas conocidas, es la que se muestra a continuación, que suele atribuirse al propio Pitágoras.
A partir de la igualdad de los triángulos rectángulos es evidente la igualdad
a2 + b2 = c2
PLATÓN.
La relación que expresa el teorema de Pitágoras es especialmente intuitiva si se aplica a un triángulo rectángulo e isósceles. Este problema lo trata Platón en sus famosos diálogos.
EUCLIDES.
La relación entre los catetos y la hipotenusa de un triángulo rectángulo, aparece ya en los Elementos de Euclides.
Elementos de Euclides. Proposición I.47.
En los triángulos rectángulos el cuadrado del lado que subtiende el ángulo recto es igual a los cuadrados de los lados que comprenden el ángulo recto.
Para demostrarlo, Euclides construye la figura que se representa a la derecha.
La prueba que da Euclides consiste en demostrar la igualdad de las áreas representadas
...