ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termodinamica


Enviado por   •  22 de Julio de 2013  •  5.021 Palabras (21 Páginas)  •  263 Visitas

Página 1 de 21

CALOR

El calor está definido como la forma de energía que se transfiere entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas, sin embargo en termodinámica generalmente el término calor significa simplemente transferencia de energía. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).

La energía puede ser transferida por diferentes mecanismos de transferencia, estos son la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado. Cabe resaltar que los cuerpos no tienen calor, sino energía térmica. La energía existe en varias formas. En este caso nos enfocamos en el calor, que es el proceso mediante el cual la energía se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.

HISTORIA

Montaje experimental para la determinación del equivalente mecánico del calor.

Hasta el siglo XIX se explicaba el efecto del ambiente en la variación de la temperatura de un cuerpo por medio de un fluido invisible llamado calórico. Este se producía cuando algo se quemaba y, además, que podía pasar de un cuerpo a otro. La teoría del calórico afirmaba que una sustancia con mayor temperatura que otra, necesariamente, poseía mayor cantidad de calórico.

Benjamin Thompson y James Prescott Joule establecieron que el trabajo podía convertirse en calor o en un incremento de la energía térmica determinando que, simplemente, era otra forma de la energía.

SENSACIÓN DE CALOR EN EL SER HUMANO

Generalmente en la mayoría de los países, se habla ya de calor cuando la temperatura supera los 26 ºC en cualquier hora del día, aunque varía mucho según la estación del año en que se encuentre una persona. Por ejemplo, 20º C en verano es considerado una temperatura fresca, mientras que en invierno, esta temperatura es considerada templada o cálida.

El fenómeno "ola de calor" se da cuando las temperaturas diurnas superan los 32 ºC y las nocturnas (o al amanecer) no bajan de los 23 ºC por 3 días y es común en casi todo tipo de climas en época veraniega, a excepción de los países cerca de los polos, con clima templado y polar, cuando es muy infrecuente o casi nulo, y se hace más frecuente cuando los países están más cerca de los trópicos (países con climas tropical y subtropical). Esta denominación de ola de calor no quiere decir necesariamente calor excesivo ni temperaturas inusuales para la estación; pretende alertar sobre consecuencias perjudiciales en personas o colectivos vulnerables.

El ser humano siente más calor cuando hay más humedad en el ambiente. Por ejemplo, una temperatura de 30 ºC, pero con humedad ambiental del 10%, se sentirá como si el ambiente fuese de solo 28º C. Pero con humedad ambiental del 90%, se sentirá como si el ambiente fuese de 40 ºC.

UNIDADES DE MEDIDA

La unidad de medida del calor en el Sistema Internacional de Unidades es la misma que la de la energía y el trabajo: el Joule.

Otra unidad ampliamente utilizada para medir la cantidad de energía térmica intercambiada es la caloría (cal), que es la cantidad de energía que hay que suministrar a un gramo de agua para elevar su temperatura 1 °C. Diferentes condiciones iniciales dan lugar a diferentes valores para la caloría. La caloría también es conocida como caloría pequeña, en comparación con la kilocaloría (kcal), que se conoce como caloría grande y es utilizada en nutrición.

1 kcal = 1000 cal

Joule, tras múltiples experimentaciones en las que el movimiento de unas palas, impulsadas por un juego de pesas, se movían en el interior de un recipiente con agua, estableció el equivalente mecánico del calor, determinando el incremento de temperatura que se producía en el fluido como consecuencia de los rozamientos producidos por la agitación de las palas:

1 cal = 4,184 J1

El BTU, (o unidad térmica británica) es una medida para el calor muy usada en Estados Unidos y en muchos otros países de América. Se define como la cantidad de calor que se debe agregar a una libra de agua para aumentar su temperatura en un grado Fahrenheit, y equivale a 252 calorías.

CALOR ESPECÍFICO

El calor específico es la energía necesaria para elevar 1 °C la temperatura de un gramo de materia. El concepto de capacidad calorífica es análogo al anterior pero para una masa de un mol de sustancia (en este caso es necesario conocer la estructura química de la misma).

El calor específico es un parámetro que depende del material y relaciona el calor que se proporciona a una masa determinada de una sustancia con el incremento de temperatura:

dónde:

• es el calor aportado al sistema.

• es la masa del sistema.

• es el calor específico del sistema.

• es el incremento de temperatura que experimenta el sistema.

Las unidades más habituales de calor específico son J / (kg • K) y cal / (g • °C).

El calor específico de un material depende de su temperatura; no obstante, en muchos procesos termodinámicos su variación es tan pequeña que puede considerarse que el calor específico es constante. Asimismo, también se diferencia del proceso que se lleve a cabo, distinguiéndose especialmente el "calor específico a presión constante" (en un proceso isobárico) y "calor específico a volumen constante (en un proceso isocórico).

De esta forma, y recordando la definición de caloría, se tiene que el calor específico del agua es aproximadamente:

Calor específico molar

El calor específico de una sustancia es un índice importante de su constitución molecular interna, y a menudo da información valiosa de los detalles de su ordenación molecular y de las fuerzas intermoleculares. En este sentido, con frecuencia es muy útil hablar de calor específico molar denotado por cm, y definido como la cantidad de energía necesaria para elevar la temperatura de un mol de una sustancia en 1 grado es decir, está definida por:

donde n indica la cantidad de moles en la sustancia presente.

Capacidad calorífica

La capacidad calorífica de una sustancia es una magnitud que indica la mayor o menor dificultad que presenta dicha sustancia para experimentar cambios de temperatura bajo el suministro de calor. Se denota por , se acostumbra a medir en J/K, y se define como:

Dado que:

De igual forma se puede definir la capacidad calórica molar como:

CALOR LATENTE

Un cuerpo sólido puede estar en equilibrio térmico con un líquido o un gas a cualquier temperatura, o que un líquido y un gas pueden estar en equilibrio térmico entre sí, en una amplia gama de temperaturas, ya que se trata de sustancias diferentes. Pero lo que es menos evidente es que dos fases o estados de agregación, distintas de una misma sustancia, puedan estar en equilibrio térmico entre sí en circunstancias apropiadas.

Un sistema que consiste en formas sólida y líquida de determinada sustancia, a una presión constante dada, puede estar en equilibrio térmico, pero únicamente a una temperatura llamada punto de fusión simbolizado a veces como . A esta temperatura, se necesita cierta cantidad de calor para poder fundir cierta cantidad del material sólido, pero sin que haya un cambio significativo en su temperatura. A esta cantidad de energía se le llama calor de fusión, calor latente de fusión o entalpía de fusión, y varía según las diferentes sustancias. Se denota por .

El calor de fusión representa la energía necesaria para deshacer la fase sólida que está estrechamente unida y convertirla en líquido. Para convertir líquido en sólido se necesita la misma cantidad de energía, por ello el calor de fusión representa la energía necesaria para cambiar del estado sólido a líquido, y también para pasar del estado líquido a sólido.

El calor de fusión se mide en cal / g.

De manera similar, un líquido y un vapor de una misma sustancia pueden estar en equilibrio térmico a una temperatura llamada punto de ebullición simbolizado por . El calor necesario para evaporar una sustancia en estado líquido ( o condensar una sustancia en estado de vapor ) se llama calor de ebullición o calor latente de ebullición o entalpía de ebullición, y se mide en las mismas unidades que el calor latente de fusión. Se denota por .

En la siguiente tabla se muestran algunos valores de los puntos de fusión y ebullición, y entalpías de algunas sustancias:

sustancias [°C] [cal/g] [°C] [cal/g]

H2O

0,00 79,71 100,00 539,60

O2

-219,00 3,30 -182,90 50,90

Hg

-39,00 2,82 357,00 65,00

Cu

1083,00 42,00 2566,90

TRANSMISIÓN DE CALOR

El calor puede ser transmitido de tres formas distintas: por conducción, por convección o por radiación.

• Conducción térmica: es el proceso que se produce por contacto térmico entre dos ó más cuerpos, debido al contacto directo entre las partículas individuales de los cuerpos que están a diferentes temperaturas, lo que produce que las partículas lleguen al equilibrio térmico. Ej: cuchara metálica en la taza de té.

• Convección térmica: sólo se produce en fluidos (líquidos o gases), ya que implica movimiento de volúmenes de fluido de regiones que están a una temperatura, a regiones que están a otra temperatura. El transporte de calor está inseparablemente ligado al movimiento del propio medio. Ej.: los calefactores dentro de la casa.

• Radiación térmica: es el proceso por el cual se transmite a través de ondas electromagnéticas. Implica doble transformación de la energía para llegar al cuerpo al que se va a propagar: primero de energía térmica a radiante y luego viceversa. Ej.: La energía solar.

La conducción pura se presenta sólo en materiales sólidos.

La convección siempre está acompañada de la conducción, debido al contacto directo entre partículas de distinta temperatura en un líquido o gas en movimiento.

En el caso de la conducción, la temperatura de calentamiento depende del tipo de material, de la sección del cuerpo y del largo del cuerpo. Esto explica por qué algunos cuerpos se calientan más rápido que otros a pesar de tener exactamente la misma forma, y que se les entregue la misma cantidad de calor.

CONDUCTIVIDAD TÉRMICA

La conductividad térmica de un cuerpo está dada por:

Dónde:

es el calor entregado,

es el intervalo de tiempo durante el cual se entregó calor,

es el coeficiente de conductividad térmica propio del material en cuestión,

es la sección del cuerpo,

es la longitud, y

es el incremento en la temperatura.

Medida experimental del calor

Para determinar, de manera directa, el calor que se pone de manifiesto en un proceso de laboratorio, se suele emplear un calorímetro. En esencia, se trata de un recipiente que contiene el líquido en el que se va a estudiar la variación de energía por transferencia de calor y cuyas paredes y tapa (supuestamente adiabáticas) deben aislarlo, al máximo, del exterior.

Un termo de paredes dobles de vidrio, cuyas superficies han sido previamente metalizadas por deposición y que presenta un espacio vacío entre ellas es, en principio, un calorímetro aceptable para una medida aproximada de la transferencia de calor que se manifiesta en una transformación tan sencilla como esta. El termo se llama vaso Dewar y lleva el nombre del físico y químico escocés James Dewar, pionero en el estudio de las bajas temperaturas. En la tapa aislante suele haber un par de orificios para introducir un termómetro con el que se evaluaría el incremento (o decremento) de la temperatura interior del líquido, y un agitador para tratar de alcanzar el equilibrio térmico en su interior lo más rápido posible, usando un sencillo mecanismo de convección forzada.

No sólo el líquido contenido en el calorímetro absorbe calor, también lo absorben las paredes del calorímetro. Lo mismo sucede cuando pierde calor. Esta intervención del calorímetro en el proceso se representa por su equivalente en agua. La presencia de esas paredes, no ideales, equivale a añadir al líquido que contiene, los gramos de agua que asignamos a la influencia del calorímetro y que llamamos "equivalente en agua". El "equivalente en agua" viene a ser "la cantidad de agua que absorbe o desprende el mismo calor que el calorímetro".

TERMODINÁMICA Y TRANSFERENCIA DE CALOR

La termodinámica se interesa en la cantidad de transferencia de calor a medida que un sistema pasa por un proceso, sin indicar cuánto tiempo transcurrirá. Un estudio termodinámico sencillamente nos dice cuánto calor debe transferirse para que se realice un cambio de estado específico, con el fin de cumplir con el principio de conservación de la energía. En la experiencia nos enfocamos más en la velocidad de la transferencia de calor que en la cantidad transferida. La termodinámica trata de los estados en equilibrio y de los cambios que ocurren entre un estado de equilibrio y otro. Por otra parte, la transferencia de calor se ocupa de los sistemas en los que se presenta desequilibrio térmico y, por tanto, existe una condición de no equilibrio. En consecuencia, el estudio de la transferencia de calor no puede basarse sólo en los principios de la termodinámica; sin embargo, existen leyes de la termodinámica que constituyen la base científica de la transferencia de calor.

La primera ley de la termodinámica establece que la velocidad de transferencia de energía hacia un sistema es igual a la velocidad de incremento de la energía de dicho sistema. Su segunda ley, establece que el calor se transfiere en dirección de la temperatura decreciente. El requisito básico para la transferencia de calor es la presencia de una diferencia de temperatura. No existe la más mínima posibilidad de que se dé transferencia neta de calor entre dos medios que están a la misma temperatura, esta diferencia de temperaturas constituye la condición básica necesaria para que se dé transferencia de calor.

Anteriormente mencionamos que el análisis termodinámico no se ocupa de la velocidad de la transferencia de calor en cierta dirección pero, ahora, podemos decir que este parámetro depende de la magnitud del gradiente de temperatura (o diferencia de temperatura por unidad de longitud, o la razón o relación de cambio de la temperatura en esa dirección). A mayor gradiente de temperatura, mayor es la velocidad de transferencia de calor.

EQUILIBRIO TERMICO

Es el estado en el que se igualan las temperaturas de dos cuerpos que inicialmente tenían diferentes temperaturas. Al igualarse las temperaturas se suspende el flujo de calor, y el sistema formados por esos cuerpos llega a su equilibrio térmico.

Por ejemplo, si pone tienes un recipiente con agua caliente, y otro con agua fría, a través de sus paredes se establecera un flujo de energía calorífica, pasado un tiempo, la temperatura del agua en ambos recipientes se igualará (por obra de las transferencias de calor, en este caso del agua más caliente a la más fría, también por contacto con el aire del medio ambiente y por evaporación), pero el equilibrio térmico lo alcanzarán cuando ambas masas de agua estén a la misma temperatura.

La cantidad de calor (Q) que gana o pierde un cuerpo de masa (m) se encuentra con la fórmula

Dónde:

Q es la cantidad de calor (que se gana o se pierde), expresada en calorías.

m es la masa del cuerpo en estudio. Se expresa en gramos

Ce es el calor específico del cuerpo. Su valor se encuentra en tablas conocidas. Se expresa en cal / gr º C

Δt es la variación de temperatura = Tf − T0. Léase Temperatura final (Tf) menos Temperatura inicial (T0), y su fórmula es

Ejercicio

1)¿Cuál será la temperatura de una mezcla de 50 gramos de agua a 20 grados Celsius y 50 gramos de agua a 40 grados Celsius?

Desarrollo:

Datos:

Capacidad calorífica específica del agua: 1 cal/grº C

El agua que está a 20º C ganará temperatura

El agua que está a 40º C perderá temperatura

Sabemos que para conseguir el equilibrio térmico (igualar las temperaturas) la cantidad de calor ganada por un cuerpo debe ser igual a la cantidad de calor perdida por el otro.

Entonces:

para los 50 gr de agua a 20º C tendremos Q1 (cantidad de calor ganada)

reemplazamos los valores y queda

(cantidad de calor ganada)

para los 50 gr de agua a 40º C tendremos Q2 (cantidad de calor perdida)

(cantidad de calor perdida)

Como Q1 = Q2 (calor ganado = calor perdido)

Entonces:

Respuesta: La temperatura de equilibrio es 30 grados Celsius

DILATACION DE LOS CUERPOS

La mayoría de los cuerpos se dilatan cuando se calientan y se contraen cuando se enfrían.

Al calentar un cuerpo, las moléculas se mueven más rápido, chocan fuertemente y se separan entre ellas.

Para explicar este comportamiento, podríamos imaginar una pista de baile, en ella pueden caber muchas personas si se encuentran muy juntas y no se mueven, pero si ahora bailan despacio, entonces, ocupan más campo y chocan entre ellas; si bailan más rápidamente ocuparán aún mayor espacio y los choques serán más frecuentes.

ESTADOS DE LA MATERIA

La materia se presenta en tres estados o formas de agregación: sólido, líquido y gaseoso.

Dadas las condiciones existentes en la superficie terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.

La mayoría de sustancias se presentan en un estado concreto. Así, los metales o las sustancias que constituyen los minerales se encuentran en estado sólido y el oxígeno o el CO2 en estado gaseoso: •Los sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus estructuras.

•Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.

•Los gases: No tienen forma ni volumen fijos. En ellos es muy característica la gran variación de volumen que experimentan al cambiar las condiciones de temperatura y presión.

ESTADO SÓLIDO

Los sólidos se caracterizan por tener forma y volumen constantes. Esto se debe a que las partículas que los forman están unidas por unas fuerzas de atracción grandes de modo que ocupan posiciones casi fijas.

En el estado sólido las partículas solamente pueden moverse vibrando u oscilando alrededor de posiciones fijas, pero no pueden moverse trasladándose libremente a lo largo del sólido.

Las partículas en el estado sólido propiamente dicho, se disponen de forma ordenada, con una regularidad espacial geométrica, que da lugar a diversas estructuras cristalinas.

Al aumentar la temperatura aumenta la vibración de las partículas.

ESTADO LÍQUIDO

Los líquidos, al igual que los sólidos, tienen volumen constante. En los líquidos las partículas están unidas por unas fuerzas de atracción menores que en los sólidos, por esta razón las partículas de un líquido pueden trasladarse con libertad. El número de partículas por unidad de volumen es muy alto, por ello son muy frecuentes las colisiones y fricciones entre ellas.

Así se explica que los líquidos no tengan forma fija y adopten la forma del recipiente que los contiene. También se explican propiedades como la fluidez o la viscosidad.

En los líquidos el movimiento es desordenado, pero existen asociaciones de varias partículas que, como si fueran una, se mueven al unísono. Al aumentar la temperatura aumenta la movilidad de las partículas (su energía).

ESTADO GASEOSO

Los gases, igual que los líquidos, no tienen forma fija pero, a diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.

En los gases, las fuerzas que mantienen unidas las partículas son muy pequeñas. En un gas el número de partículas por unidad de volumen es también muy pequeño.

Las partículas se mueven de forma desordenada, con choques entre ellas y con las paredes del recipiente que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que presentan los gases: sus partículas se mueven libremente, de modo que ocupan todo el espacio disponible. La compresibilidad tiene un límite, si se reduce mucho el volumen en que se encuentra confinado un gas éste pasará a estado líquido.

Al aumentar la temperatura las partículas se mueven más deprisa y chocan con más energía contra las paredes del recipiente, por lo que aumenta la presión:

Plasma (estado de la materia)

En física y química, se denomina plasma al cuarto estado de agregación de la materia, un estado fluido similar al estado gaseoso pero en el que determinada proporción de sus partículas están cargadas eléctricamente y no poseen equilibrio electromagnético, por eso son buenos conductores eléctricos y sus partículas responden fuertemente a las interacciones electromagnéticas de largo alcance.

El plasma presenta características propias que no se dan en los sólidos, líquidos o gases, por lo que es considerado otro estado de agregación de la materia. Como el gas, el plasma no tiene una forma definida o un volumen definido, a no ser que esté encerrado en un contenedor; pero a diferencia del gas en el que no existen efectos colectivos importantes, el plasma bajo la influencia de un campo magnético puede formar estructuras como filamentos, rayos y capas dobles. Los átomos de este estado se mueven libremente; cuanto más alta es la temperatura más rápido se mueven los átomos en el gas, y en el momento de colisionar la velocidad es tan alta que se produce un desprendimiento de electrones.

Calentar un gas puede ionizar sus moléculas o átomos (reduciendo o incrementado su número de electrones para formar iones), convirtiéndolo en un plasma. La ionización también puede ser inducida por otros medios, como la aplicación de un fuerte campo electromagnético mediante un láser o un generador de microondas, y es acompañado por la disociación de los enlaces covalentes, si están presentes.

El plasma es el estado de agregación más abundante de la naturaleza, y la mayor parte de la materia en el Universo visible se encuentra en estado de plasma, la mayoría del cual es el enrarecido plasma intergaláctico (particularmente el medio del intracluster) y en las estrellas.6

TEORIA CINETICA DE LOS GASES

Es una teoría física y química que explica el comportamiento y propiedades macroscópicas de los gases (Ley de los gases ideales), a partir de una descripción estadística de los procesos moleculares microscópicos. La teoría cinética se desarrolló con base en los estudios de físicos como Daniel Bernoulli en el siglo XVIII y Ludwig Boltzmann y James Clerk Maxwell a finales del siglo XIX.

LA TERMODINÀMICA

Es el estudio de las relaciones entre las diferentes propiedades de la materia que dependen de la temperatura.

La primera ley asegura la conservación de la energía total, mecánica y calorífica, y su posible transformación de un tipo a otro.

Sin embargo, la experiencia muestra que todo el trabajo puede transformarse en calor, mientras que éste no puede convertirse totalmente en trabajo.

También la experiencia enseña que el calor siempre pasa del cuerpo más caliente al menos caliente. Esta es la esencia de la segunda ley de la termodinámica.

La primera ley permite las transformaciones de la energía.

La segunda limita estas modificaciones en cierto sentido.

Leyes de la termodinámica

PRINCIPIO CERO DE LA TERMODINÁMICA

Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.

En palabras llanas: «Si pones en contacto un objeto frío con otro caliente, ambos evolucionan hasta que sus temperaturas se igualan».

Tiene una gran importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez esta dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.

Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.

PRIMERA LEY DE LA TERMODINÁMICA

También conocida como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará.

En palabras llanas: "La energía ni se crea ni se destruye: solo se transforma".

Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.

La ecuación general de la conservación de la energía es la siguiente:

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:

Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.

Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional (véase criterio de signos termodinámico).

SEGUNDA LEY DE LA TERMODINÁMICA

Esta ley marca la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius[editar]

Diagrama del ciclo de Carnot en función de la presión y el volumen.

En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».

Enunciado de Kelvin—Planck[editar]

Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, y la realización de una cantidad igual de trabajo.

Otra interpretación[editar]

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y ésta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

TERCERA LEY DE LA TERMODINÁMICA

La tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la termodinámica clásica, así que es probablemente inapropiado tratarlo de «ley».

Es importante remarcar que los principios o leyes de la termodinámica son válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel microscópico. La idea del demonio de Maxwell ayuda a comprender los límites de la segunda ley de la termodinámica jugando con las propiedades microscópicas de las partículas que componen un gas.

SISTEMA TERMODICAMICO

Se puede definir un sistema como un conjunto de materia, que está limitado por una superficie, que le pone el observador, real o imaginaria. Si en el sistema no entra ni sale materia, se dice que se trata de un sistema cerrado, o sistema aislado si no hay intercambio de materia y energía, dependiendo del caso. En la naturaleza, encontrar un sistema estrictamente aislado es, por lo que sabemos, imposible, pero podemos hacer aproximaciones. Un sistema del que sale y/o entra materia, recibe el nombre de abierto. Ponemos unos ejemplos:

• Un sistema abierto: se da cuando existe un intercambio de masa y de energía con los alrededores; es por ejemplo, un coche. Le echamos combustible y él desprende diferentes gases y calor.

• Un sistema cerrado: se da cuando no existe un intercambio de masa con el medio circundante, sólo se puede dar un intercambio de energía; un reloj de cuerda, no introducimos ni sacamos materia de él. Solo precisa un aporte de energía que emplea para medir el tiempo.

• Un sistema aislado: se da cuando no existe el intercambio ni de masa y energía con los alrededores; ¿Cómo encontrarlo si no podemos interactuar con él? Sin embargo un termo lleno de comida caliente es una aproximación, ya que el envase no permite el intercambio de materia e intenta impedir que la energía (calor) salga de él. El universo es un sistema aislado, ya que la variación de energía es cero

MEDIO EXTERNO

Se llama medio externo o ambiente a todo aquello que no está en el sistema pero que puede influir en él. Por ejemplo, consideremos una taza con agua, que está siendo calentada por un mechero. Consideremos un sistema formado por la taza y el agua, entonces el medio está formado por el mechero, el aire, etc.

...

Descargar como  txt (31.6 Kb)  
Leer 20 páginas más »
txt