Algebra 1
yorw1229 de Enero de 2014
2.637 Palabras (11 Páginas)289 Visitas
Razonamientos e inferencias
El término «razonamiento» tiene dos acepciones (que el diccionario recoge en una sola: «acción y efecto de razonar» ): una procesal (la actividad del agente que razona) y otra funcional (la relación entre las premisas y la conclusión). La lógica se ocupa de los razonamientos en el sentido funcional. En efecto, en el proceso que lleva de las premisas a la conclusión pueden encadenarse múltiples pasos elementales. En la lógica se estudian las condiciones bajo las cuales estos pasos son correctos, pero no cómo y en qué orden deben realizarse: se supone que la mente dispone de los mecanismos adecuados para hacerlo. De los aspectos procesales de los razonamientos se ocupa la psicología, en el caso de que el agente sea humano. Pero si el agente es un artefacto (que, con la tecnología actual, es lo mismo que decir un ordenador) entonces es un asunto propio de la inteligencia artificial.
Una inferencia es simplemente un razonamiento formal, en el sentido de que lo importante es la forma de las premisas y la conclusión y la relación entre ellas, no su contenido.
Razonamientos deductivos
El adjetivo «válido» , aplicado a un razonamiento, es sinónimo de «deductivo» . Esto quiere decir que si las premisas son verdaderas entonces la conclusión con seguridad lo es también. Esta idea reviste gran importancia, de modo que vamos a ilustrarla con un ejemplo:
Premisa1:
Todos los libros sobre ordenadores son terriblemente aburridos
Premisa2:
Éste es un libro sobre ordenadores
Conclusión:
Este libro es terriblemente aburrido
Aspectos de Razonamiento
Razonamientos aproximados
En el Apartado 1.8 justificábamos la necesidad de considerar que puede haber incertidumbre, imprecisión y subjetividad en el conocimiento, y en el Apartado 2.3.3 vimos un método heurístico sencillo para cuantificar la incertidumbre y extender el modus ponens a los razonamientos aproximados. Dedicaremos el Capítulo 6 a los lenguajes lógicos que permiten formalizar estos razonamientos. Desde el punto de vista de la lógica formal, para acoger este tipo de razonamiento es preciso abandonar la «lógica binaria» , que aquella en la que las proposiciones son o verdaderas o falsas.
Razonamientos inductivos
En un razonamiento puramente deductivo las premisas respaldan totalmente a la conclusión. Pero hay otro tipo de razonamiento en el que las premisas respaldan la conclusión con cierta «fuerza» : tanto mayor es la fuerza cuanto mayor sea el número de premisas. El ejemplo clásico es el del observador que ve cisnes y hace este razonamiento:
Premisa 1: El cisne 1 es blanco
Premisa 2: El cisne 2 es blanco
Premisa 3: El cisne 3 es blanco
Conclusión: Todos los cisnes son blancos
En el razonamiento deductivo estamos seguros de que si las premisas son verdaderas la conclusión también lo es; ahora, claramente, no. Por otra parte, en el deductivo la conclusión puede ser verdadera aunque haya premisas falsas; aquí no: la falsedad de una premisa invalida la conclusión. Por eso suele decirse que el razonamiento deductivo preserva la verdad, mientras que el razonamiento inductivo preserva la falsedad.
El razonamiento deductivo, generalmente, va de lo general a lo particular, puesto que, normalmente (aunque no necesariamente) incluye alguna premisa de tipo general. El razonamiento inductivo que acabamos de ver es un razonamiento por generalización, que va de lo particular a lo general. Pero hay otros razonamientos inductivos que proceden por analogía. Baste un par de ejemplos:
(a) De lo general a lo general:
Todos los gorriones son pájaros y hacen nidos
Todas las gaviotas son pájaros y hacen nidos
Todos los cuervos son pájaros
________________________________________
Todos los cuervos hacen nidos
(b) De lo particular a lo particular:
A es político y es mentiroso
B es político y es mentiroso
C es político
C es mentiroso
La generalización inductiva es importante en el campo de la adquisición de conocimiento mediante aprendizaje y en la minería de datos. El razonamiento por analogía lo es en los sistemas de conocimiento basados en casos.
Razonamientos abductivos
Hay otro tipo de razonamiento que no es inductivo ni deductivo, y que, pese a su «debilidad» lógica se utiliza habitualmente para resolver problemas de diagnóstico. Se llama razonamiento abductivo (pero no tiene nada que ver con actividades de seres extraterrestres). Ya lo hemos comentado en el Apartado 2.3.2 al hablar de reglas de diagnóstico, donde también le hemos llamado razonamiento basado en hipótesis. Un ejemplo puede ser:
Premisa 1: «Todos los pacientes con hepatitis presentan ictericia»
Premisa 2: «Este paciente presenta ictericia»
Conclusión: «Este paciente tiene hepatitis»
Es bastante obvio que el razonamiento no es ni deductivo ni inductivo. Es otro tipo de «razonamiento aproximado» . De hecho, la conclusión debería formularse en estos términos: «viendo que este paciente presenta ictericia, puedo suponer, en principio, que tiene hepatitis, a menos que haya descartado esta hipótesis por otro motivo» .
La abducción está en la base de los sistemas basados en conocimiento que razonan con una lógica bayesiana (Apartado 6.2).
Razonamientos modales
La lógica «clásica» (la que estudiaremos en la segunda parte) es asertórica. Esto significa que no sólo es una «lógica binaria» , en las que las proposiciones no tiene otro valor semántico que «verdadero» o «falso» , sino que no admite matices de esa verdad o falsedad. Por ejemplo: «posiblemente sea verdad» , o «mañana será verdad» , o «el agente cree que es verdad» . Estos matices se llaman en lógica modalidades, y el razonamiento con modalidades es típico de las actitudes intencionales (Apartado 1.9). Dedicaremos el Capítulo 7 a las lógicas que permiten formalizar estos razonamientos.
Razonamientos no monótonos
Mencionaremos finalmente un tipo de razonamiento que tiene que ver más con el proceso que con la conceptuación. Un razonamiento se llama monótono cuando a lo largo del proceso el conjunto de «cosas sabidas» es siempre creciente. Pero en la realidad suele ocurrir que, a medida que avanza el proceso de inferencias, nuevas evidencias o acciones del mismo sistema anulan premisas o conclusiones anteriores, y para formalizar esto se necesita una lógica no monótona. Un proceso frecuente es el razonamiento por defecto: suponer que algo es verdadero (o falso) mientras no haya evidencia de lo contrario. El sistema que razona debe tener en cuenta que la aparición de esa evidencia puede tener un efecto retroactivo sobre las conclusiones obtenidas anteriormente, para lo que debe incluir un sistema de mantenimiento de la verdad.
A veces se escriben las premisas pensando más en el proceso que en su semántica declarativa. Es necesario asegurarse de que el proceso será exactamente el que estamos pensando. Un ejemplo es la regla 5 de la Figura 1.4, que puede parecer contradictoria («si no está endosado, entonces está endosado» ). Desde el punto de vista declarativo, veremos en el Apartado 3.3.2 que es lógicamente equivalente a decir «siempre está endosado» . Pero naturalmente no estamos pensando así al enunciar la regla: suponemos que en el proceso puede darse la situación de que el cheque, aunque completo, no esté endosado; la regla dice que en tal caso se pedirá la firma (se supone que esta acción da siempre un resultado positivo) y el cheque pasará a estar endosado. Ahora bien, declarativamente (lógicamente), la regla es equivalente a la conjunción de estas dos:
(5a) Si talón_cumplimentado y NO talón_endosado entonces pedir firma
(5b) Si talón_cumplimentado entonces talón_endosado
Y es evidente que el resultado es incorrecto si se aplica (5b) antes que (5a).
Razonamiento Lógico o Casi Lógico
que incluiría el razonamiento deductivo y el razonamiento inductivo.
Razonamiento no-lógico, que tendría que ver con el uso e interpretación del lenguaje, la lógica difusa, los sentimientos, etc.
Razonamiento cuantitativo, relacionado con la habilidad de comparar, comprender y sacar conclusiones sobre cantidades, conservación de la cantidad, etc.
El cociente de inteligencia, por ejemplo, medido por test no lingüísticos, es una combinación de razonamiento cuantitativo y razonamiento lógico. Es un hecho constatado que aunque estos tres tipos de razonamiento están presentes en todos los seres humanos, el nivel alcanzado en cada uno presenta cierta variación en función de la educación, el entorno y la genética. Los razonamientos no válidos que, sin embargo, parecen serlo, se denominan falacias.
Razonamiento no-lógico
Artículo principal: razonamiento no deductivo
Existe otro tipo de razonamiento denominado razonamiento no-lógico o informal, el cual no sólo se basa en premisas con una única alternativa correcta (razonamiento lógico-formal, el descrito anteriormente), sino que es más amplio en cuanto a soluciones, basándose en la experiencia y en el contexto. Los niveles educativos más altos suelen usar el razonamiento lógico, aunque no es excluyente. Algunos autores llaman a este tipo de razonamiento argumentación. Como ejemplo para ilustrar estos dos tipos de razonamiento, podemos situarnos
...