ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CLOROPLASTOS


Enviado por   •  25 de Febrero de 2014  •  5.297 Palabras (22 Páginas)  •  358 Visitas

Página 1 de 22

Contenido

LOS CLOROPLASTOS 3

MARCO TEORICO 3

OBJETIVOS 3

DEFINICIÓN 3

ESTRUCTURA 4

PLASTOGLÓBULOS 6

FUNCIONES 6

Fase luminosa o fotoquímica 6

Fotofosforilación acíclica (oxigénica) 7

Fase luminosa cíclica (Fotofosforilación anoxigénica) 7

Fase Oscura 9

FOTORRESPIRACIÓN 12

Fotosistemas y pigmentos fotosintéticos 13

Los fotosistemas 13

Fotosistema I y Fotosistema II 13

Los pigmentos fotosintéticos y la absorción de la luz 14

Factores externos que influyen en el proceso 15

Fotosíntesis anoxigénica o bacteriana 16

Fotosíntesis artificial 17

CONCLUSIONES 18

BIBLIOGRAFÍA 19

ENLACES ELECTRÓNICOS 19

INTRODUCCIÓN

El cloroplasto presenta en su interior una serie de sacos aplanados que flotan sobre el estroma y que pueden encontrarse apilados, llamados tilacoides. En las membranas de los tilacoides existe un conjunto de aparato enzimático que transforma la luz en ATP en la fase luminosa de la fotosíntesis.

Los vegetales se caracterizan por su capacidad para fabricar azúcares a partir del CO2 que obtiene de la atmósfera, y del agua. La Fotosíntesis, que efectúan las plantas aprovechando la energía solar. La fotosíntesis se verifica en las células de las hojas. Comprende inicialmente, la descomposición del agua procedente de la raíz en sus dos elementos-hidrógeno y oxígeno, por acción a la luz y de la clorofila , el pigmento verde de las hojas .El hidrógeno proveniente del agua se combina con el CO2 para formar azúcares sencillos como la glucosa. Posteriormente la glucosa forma polímeros como el almidón, que almacena energía, o la lignina que forma los tejidos leñosos de la planta .La planta libera el oxígeno y el dióxido de carbono a la atmósfera.

La unidad estructural que realiza la fotosíntesis es el tilacoide, una estructura membranosa en forma de saco aplanado o vesícula que se encuentra dentro de los cloroplastos.

Los cloroplastos (chloro significa “verde”) son los plastidos que contienen clorofila y en los cuales se produce energía química a partir de energía lumínica, en un proceso denominado fotosíntesis, están rodeados por dos membranas .

La cilcosis describe corrientes citoplásmicas cíclicas que se observan en las células de las plantas y de otros eucariontes, como ciliados y foraminíferos. Además de corrientes cíclicas puede haber corrientes de otros tipos.

LOS CLOROPLASTOS

MARCO TEORICO

OBJETIVOS

 Conocer la naturaleza de las células vegetales.

 Ampliar nuestros conocimientos sobre los los cloroplastos en células vegetales.

 Comprender el movimiento de los cloroplastos (ciclosis) en las células.

DEFINICIÓN

Los cloroplastos son orgánulos típicos y exclusivos de las células vegetales que poseen clorofila. Por ellos las plantas son capaces de realizar el proceso de fotosíntesis, proceso que transforma la energía luminosa en energía química contenida en las moléculas de ATP. Como las mitocondrias, también producen energía.

Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía lumínica en energía química, como la clorofila.

El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas.

Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.

ESTRUCTURA

Los cloroplastos son orgánulos con forma de disco, de entre 4 y 6 m de diámetro y 10 m o más de longitud. Aparecen en mayor cantidad en las células de las hojas, lugar en el cual parece que pueden orientarse hacia la luz. Es posible que en una célula haya entre cuarenta y cincuenta cloroplastos, y en cada milímetro cuadrado de la superficie de la hoja hay 500.000 cloroplastos. Cada cloroplasto está recubierto por una membrana doble. El cloroplasto contiene en su interior una sustancia básica denominada estroma, la cual está atravesada por una red compleja de discos conectados entre sí, llamados lamelas. Muchas de las lamelas se encuentran apiladas como si fueran platillos; a estas pilas se les llama grana.

Son polimorfos y de color verde por la acumulación de clorofila. Su forma más frecuente es lenticular, ovoide o esférico. También presenta una doble membrana (externa e interna) y entre ellas un espacio intermembranoso.

El interior se rellena por un gel llamado estroma. Presenta un ADN independiente del núcleo y plastorribosomas. Inmersos en el estroma existen unos sacos aplanados llamados tilacoides o lamelas cuyo interior se llama lúmen. Los tilacoides pueden extenderse por todo el estroma o apilarse formando paquetes llamados grana. En la membrana de los grana o tilacoides se ubican los sistemas enzimáticos que captan la energía del sol y efectúan el transporte de electrones para formar ATP.

El cloroplasto está rodeado de dos membranas, que poseen una diversa estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas, pero en menor medida que la membrana interna, que contiene proteínas específicas para el transporte.

La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias.

También, hay una serie de sáculos delimitados por una membrana llamados tilacoides, que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantófilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP - sintetasa.

Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial; por su parte, el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal.

Las moléculas de clorofila, que absorben luz para llevar a cabo la fotosíntesis, están unidas a las lamelas. La energía luminosa capturada por la clorofila es convertida en adenosin - trifosfato (ATP) y moléculas reductoras (NADPH) mediante una serie de reacciones químicas que tienen lugar en los grana. Los cloroplastos también contienen gránulos pequeños de almidón donde se almacenan los productos de la fotosíntesis de forma temporal.

En las plantas, los cloroplastos se desarrollan en presencia de luz, a partir de unos orgánulos pequeños e incoloros que se llaman proplastos. A medida que las células se dividen en las zonas en que la planta está creciendo, los proplastos que están en su interior también se dividen por fisión. De este modo, las células hijas tienen la capacidad de producir cloroplastos.

En las algas, los cloroplastos se dividen directamente, sin necesidad de desarrollarse a partir de proplastos. La capacidad que tienen los cloroplastos para reproducirse a sí mismos, y su estrecha similitud, con independencia del tipo de célula en que se encuentren, sugieren que estos orgánulos fueron alguna vez organismos autónomos que establecieron una simbiosis en la que la célula vegetal era el huésped.

PLASTOGLÓBULOS

Como parte de la estructura del cloroplasto, también se pueden encontrar plastoglóbulos, que se desprenden de los tilacoides y están rodeados de una membrana similar a la de los tilacoides, y en su interior son gotas compuestas por moléculas orgánicas entre las que preponderan ciertos lípidos. La función de las moléculas de los plastoglóbulos todavía se está estudiando.

FUNCIONES

La más importante es la realización de la fotosíntesis en la que, aparte de la transformación energética, existe una transformación de materia inorgánica a orgánica, utilizando el ATP sintetizado a partir de la luz solar. En el El cloroplasto es el orgánulo donde se realiza la fotosíntesis de los organismos eucariotas autótrofos. El conjunto de reacciones de la fotosíntesis es realizada gracias a todo un complejo de moléculas presentes en el cloroplasto, una en particular, presente en la membrana de los tilacoides, es la responsable de tomar la energía del Sol, es llamada clorofila a.

Existen dos fases, que se desarrollan en compartimentos distintos:

Fase luminosa: Se realiza en la membrana de los tilacoides, donde se halla la cadena de transporte de electrones y la ATP- sintetasa responsables de la conversión de la energía lumínica en energía química (ATP) y de la generación poder reductor (NADPH).

Fase luminosa o fotoquímica

La energía lumínica que absorbe la clorofila se transmite a los electrones externos de la molécula, los cuales escapan de la misma y producen una especie de corriente eléctrica en el interior del cloroplasto al incorporarse a la cadena de transporte de electrones. Esta energía puede ser empleada en la síntesis de ATP mediante la fotofosforilación, y en la síntesis de NADPH. Ambos compuestos son necesarios para la siguiente fase o Ciclo de Calvin, donde se sintetizarán los primeros azúcares que servirán para la producción de sacarosa y almidón. Los electrones que ceden las clorofilas son repuestos mediante la oxidación del H2O, proceso en el cual se genera el O2 que las plantas liberan a la atmósfera.

Existen dos variantes de fotofosforilación: acíclica y cíclica, según el tránsito que sigan los electrones a través de los fotosistemas. Las consecuencias de seguir un tipo u otro estriban principalmente en la producción o no de NADPH y en la liberación o no de O2.

Fotofosforilación acíclica (oxigénica)

El proceso de la fase luminosa, supuesto para dos electrones, es el siguiente: Los fotones inciden sobre el fotosistema II, excitando y liberando dos electrones, que pasan al primer aceptor de electrones, la feofitina. Los electrones los repone el primer dador de electrones, el dador Z, con los electrones procedentes de la fotólisis del agua en el interior del tilacoide (la molécula de agua se divide en 2H+ + 2e- + 1/2O2). Los protones de la fotólisis se acumulan en el interior del tilacoide, y el oxígeno es liberado.

Los electrones pasan a una cadena de transporte de electrones, que invertirá su energía liberada en la síntesis de ATP. ¿Cómo? La teoría quimioosmótica nos lo explica de la siguiente manera: los electrones son cedidos a las plastoquinonas, las cuales captan también dos protones del estroma. Los electrones y los protones pasan al complejo de citocromos bf, que bombea los protones al interior del tilacoide. Se consigue así una gran concentración de protones en el tilacoide (entre éstos y los resultantes de la fotólisis del agua), que se compensa regresando al estroma a través de las proteínas ATP-sintasas, que invierten la energía del paso de los protones en sintetizar ATP. La síntesis de ATP en la fase fotoquímica se denomina fotofosforilación.

Fase luminosa cíclica (Fotofosforilación anoxigénica)

En la fase luminosa o fotoquímica cíclica interviene de forma exclusiva el fotosistema I, generándose un flujo o ciclo de electrones que en cada vuelta da lugar a síntesis de ATP. Al no intervenir el fotosistema II, no hay fotólisis del agua y, por ende, no se produce la reducción del NADP+ ni se desprende oxígeno (anoxigénica). Únicamente se obtiene ATP.

El objetivo que tiene la fase cíclica tratada es el de subsanar el déficit de ATP obtenido en la fase acíclica para poder afrontar la fase oscura posterior.

Cuando se ilumina con luz de longitud de onda superior a 680 nm (lo que se llama rojo lejano) sólo se produce el proceso cíclico. Al incidir los fotones sobre el fotosistema I, la clorofila P700 libera los electrones que llegan a la ferredoxina, la cual los cede a un citocromo bf y éste a la plastoquinona (PQ), que capta dos protones y pasa a (PQH2). La plastoquinona reducida cede los dos electrones al citocromo bf, seguidamente a la plastocianina y de vuelta al fotosistema I. Este flujo de electrones produce una diferencia de potencial en el tilacoide que hace que entren protones al interior. Posteriormente saldrán al estroma por la ATP-sintetasa fosforilando ADP en ATP. De forma que únicamente se producirá ATP en esta fase.

Sirve para compensar el hecho de que en la fotofosforilación acíclica no se genera suficiente ATP para la fase oscura.

La fase luminosa cíclica puede producirse al mismo tiempo que la acíclica.

Los electrones de los citocromos pasan a la plastocianina, que los cede a su vez al fotosistema I. Con la energía de la luz, los electrones son de nuevo liberados y captados por el aceptor A0. De ahí pasan a través de una serie de filoquinonas hasta llegar a la ferredoxina. Ésta molécula los cede a la enzima NADP+-reductasa, que capta también dos protones del estroma. Con los dos protones y los dos electrones, reduce un NADP+ en NADPH + H+.

El balance final es: por cada molécula de agua (y por cada cuatro fotones) se forman media molécula de oxígeno, 1,3 moléculas de ATP, y un NADPH + H+.

Fase oscura: Se produce en el estroma, donde se halla el enzima RuBisCO, responsable de la fijación del CO2 mediante el ciclo de Calvin. El cloroplasto se produce la fase luminosa y oscura de la fotosíntesis además de la biosíntesis de proteínas y la duplicación de su propio ADN.

Fase Oscura

Tiene lugar en la matriz o estroma de los cloroplastos, tanto la energía en forma de ATP como el NADPH que se obtuvo en la fase fotoquímica se usa para sintetizar materia orgánica por medio de sustancias inorgánicas. La fuente de carbono empleada es el dióxido de carbono, mientras que como fuente de nitrógeno se utilizan los nitratos y nitritos, y como fuente de azufre, los sulfatos. Esta fase se llama oscura, no porque ocurra de noche, sino porque no requiere de energía solar para poder concretarse.

Síntesis de compuestos de carbono: descubierta por el bioquímico norteamericano Melvin Calvin, por lo que también se conoce con la denominación de Ciclo de Calvin, se produce mediante un proceso de carácter cíclico en el que se pueden distinguir varios pasos o fases.

En primer lugar se produce la fijación del dióxido de carbono. En el estroma del cloroplasto, el dióxido de carbono atmosférico se une a la pentosa ribulosa-1,5-bisfosfato, gracias a la enzima RuBisCO, y origina un compuesto inestable de seis carbonos, que se descompone en dos moléculas de ácido-3-fosfoglicérico. Se trata de moléculas constituidas por tres átomos de carbono, por lo que las plantas que siguen esta vía metabólica se llaman C3. Si bien, muchas especies vegetales tropicales que crecen en zonas desérticas, modifican el ciclo de tal manera que el primer producto fotosintético no es una molécula de tres átomos de carbono, sino de cuatro (un ácido dicarboxílico), constituyéndose un método alternativo denominado vía de la C4, al igual que este tipo de plantas.

Con posterioridad se produce la reducción del dióxido de carbono fijado. Por medio del consumo de ATP y del NADPH obtenidos en la fase luminosa, el ácido 3-fosfoglicérico se reduce a gliceraldehído 3-fosfato. Éste puede seguir dos vías, consistiendo la primera de ellas en regenerar la ribulosa 1-5-difosfato (la mayor parte del producto se invierte en esto) o bien, servir para realizar otro tipo de biosíntesis: el que se queda en el estroma del cloroplasto comienza la síntesis de aminoácidos, ácidos grasos y almidón. El que pasa al citosol origina la glucosa y la fructosa, que al combinarse generan la sacarosa (azúcar característico de la savia) mediante un proceso parecido a la glucólisis en sentido inverso.

La regeneración de la ribulosa-1,5-difosfato se lleva a cabo a partir del gliceraldehído 3-fosfato, por medio de un proceso complejo donde se suceden compuestos de cuatro, cinco y siete carbonos, semejante a ciclo de las pentosas fosfato en sentido inverso (en el ciclo de Calvin, por cada molécula de dióxido de carbono que se incorpora se requieren dos de NADPH y tres de ATP).

 Síntesis de compuestos orgánicos nitrogenados: gracias al ATP y al NADPH obtenidos en la fase luminosa, se puede llevar a cabo la reducción de los iones nitrato que están disueltos en el suelo en tres etapas.

En un primer momento, los iones nitrato se reducen a iones nitrito por la enzima nitrato reductasa, requiriéndose el consumo de un NADPH. Más tarde, los nitritos se reducen a amoníaco gracias, nuevamente, a la enzima nitrato reductasa y volviéndose a gastar un NADPH. Finalmente, el amoníaco que se ha obtenido y que es nocivo para la planta, es captado con rapidez por el ácido α-cetoglutárico originándose el ácido glutámico (reacción catalizada por la enzima glutamato sintetasa), a partir del cual los átomos de nitrógeno pueden pasar en forma de grupo amino a otros cetoácidos y producir nuevos aminoácidos.

Sin embargo, algunas bacterias pertenecientes a lo géneros Azotobacter, Clostridium y Rhizobium y determinadas cianobacterias (Anabaena y Nostoc) tienen la capacidad de aprovechar el nitrógeno atmosférico, transformando las moléculas de este elemento químico en amoníaco mediante el proceso llamada fijación del nitrógeno. Es por ello por lo que estos organismos reciben el nombre de fijadores de nitrógeno.

 Síntesis de compuestos orgánicos con azufre: partiendo del NADPH y del ATP de la fase luminosa, el ion sulfato es reducido a ion sulfito, para finalmente volver a reducirse a sulfuro de hidrógeno. Este compuesto químico, cuando se combina con la acetilserina produce el aminoácido cisteína, pasando a formar parte de la materia orgánica celular.

Al microscopio electrónico, los cloroplastos se observan como orgánulos constituidos por una doble membrana (externa e interna), un espacio intermembranoso y un espacio interior o estroma, en el seno del cual se localizan formaciones membranosas denominadas tilacoides, con forma de sáculos aplanados.

Membrana externa e interna: su estructura es muy parecida a la que presentan el resto de las membranas. La externa tiene mayor permeabilidad a los iones y a las grandes moléculas que la interna, que es prácticamente impermeable, pero que contiene proteínas transportadoras.

Tilacoides: Son sáculos aplanados que se pueden encontrar aislados o superpuestos e interconectados, como si se tratara de una pila de monedas formando una red interna membranosa. Cada uno de estos apilamientos, con un número variable de sacos, recibe el nombre de grana. El espacio entre dos granas se denomina intergrana, y está ocupado por sacos aplanados estromáticos que conectan los granas entre sí. Por tanto, hay membranas tilacoidales estromales y membranas tilacoidales granales. En los tilacoides se realizan todos los procesos de la fotosíntesis que requieren luz, es decir, la formación de ATP y de NADPH. Sobre la cara externa de estas membranas se sitúan los complejos F1 y los pigmentos fotosintéticos.

Estroma o matriz interna amorfa: Presenta en su interior una molécula de ADN circular de doble cadena y ribosomas, denominados plastorribosomas; es el lugar donde se realizan los procesos genéticos del cloroplasto y las reacciones oscuras de la fotosíntesis. La matriz interna alberga todas las enzimas encargadas de la fijación del carbono, siendo la más abundante la rubisco, así como las enzimas que permiten la replicación, transcripción y traducción de la información genética del ADN del cloroplasto. La rubisco de las plantas es una proteína de mayor tamaño y representa alrededor del 50% de las proteínas totales cloplásticas, siendo la más abundante en la naturaleza.

FOTORRESPIRACIÓN

Este proceso, que implica el cierre de los estomas de las hojas como medida preventiva ante la posible pérdida de agua, se sobreviene cuando el ambiente es cálido y seco. Es entonces cuando el oxígeno generado en el proceso fotosintético comienza a alcanzar altas concentraciones.

Cuando existe abundante dióxido de carbono, la enzima RuBisCO (mediante su actividad como carboxilasa) introduce el compuesto químico en el ciclo de Calvin con gran eficacia. Pero cuando la concentración de dióxido de carbono en la hoja es considerablemente inferior en comparación a la de oxígeno, la misma enzima es la encargada de catalizar la reacción de la RuBisCO con el oxígeno (mediante su actividad como oxigenasa), en lugar del dióxido de carbono. Esta reacción es considerada la primera fase del proceso fotorrespiratorio, en el que los glúcidos se oxidan a dióxido de carbono y agua en presencia de luz. Además, este proceso supone una pérdida energética notable al no generarse ni NADH ni ATP (principal rasgo que lo diferencia de la respiración mitocondrial).

Cuando una molécula de RuBisCO reacciona con una de oxígeno, se origina una molécula de ácido fosfoglicerico y otra de ácido fosfoglicólico, que prontamente se hidroliza a ácido glicólico. Este último sale de los cloroplastos para posteriormente introducirse en los peroxisomas (orgánulos que albergan enzimas oxidativos), lugar en el que vuelve a reaccionar con oxígeno para producir ácido glioxílico y peróxido de hidrógeno (la acción de la enzima catalasa catalizará la descomposición de este compuesto químico en oxígeno y agua). Sin embargo el ácido glioxílico se transforma en glicina, aminoácido que se traspasa a la mitocondrias para formarse una molécula de serina a partir de dos de ácido glioxílico (este proceso conlleva la liberación de una molécula de dióxido de carbono).

Fotosistemas y pigmentos fotosintéticos

Los fotosistemas

Los pigmentos fotosintéticos se hallan alojados en unas proteínas transmembranales que forman unos conjuntos denominados fotosistemas, en los que se distinguen dos unidades diferentes: la antena y el centro de reacción.

En la antena, que también puede aparecer nombrada como LHC (abreviatura del inglés Light Harvesting Complex), predominan los pigmentos fotosintéticos sobre las proteínas. De hecho, existen entre doscientas y cuatrocientas moléculas de pigmentos de antena de varios tipos y tan sólo dos proteínas intermembranales. Sin embargo, la antena carece de pigmento diana.

En el centro de reacción, mentado en algunas ocasiones como CC (abreviatura del inglés Core Complex), las proteínas predominan sobre los pigmentos. En el centro de reacción es donde está el pigmento diana, el primer aceptor de electrones y el primer dador de electrones. En término generales, se puede decir que existe una molécula de pigmento diana, unas cuantas de pigmentos no diana, una de primer dador de electrones y una de primer aceptor. Mientras existen entre dos y cuatro proteínas de membrana.

Fotosistema I y Fotosistema II

• El Fotosistema I (PSI) capta la luz cuya longitud de onda es menor o igual a 700 nm y en las plantas superiores, su antena se caracteriza por encerrar dentro de sí una gran proporción de clorofila α, y una menor de clorofila β. En el centro de reacción, la molécula diana es la clorofila αI que absorbe a 700 nm, siendo llamada por ello clorofila P700. El aceptor primario de electrones se denomina aceptor A0 y el dador primario es la plastocianina. Sobre todo, se hallan presentes en los tilacoides del estroma.

• El Fotosistema II (PSII) capta luz cuya longitud de onda es menor o igual a 680nm.

Los pigmentos fotosintéticos y la absorción de la luz

Los pigmentos fotosintéticos son lípidos que se hayan unidos a proteínas presentes en algunas membranas plasmáticas, y que se caracterizan por presentar alternancia de enlaces sencillos con enlaces dobles. Esto se relaciona con su capacidad de aprovechamiento de la luz para iniciar reacciones químicas, y con poseer color propio. En las plantas se encuentran las clorofilas y los carotenoides; en las cianobacterias y las algas rojas también existe ficocianina y ficoeritrina; y finalmente, en las bacterias fotosintéticas está la bacterioclorofila.

La clorofila está formada por un anillo porfirínico con un átomo de magnesio en el centro, asociado a un metanol y a un fitol (monoalcohol de compuesto de veinte carbonos). Como consecuencia, se conforma una molécula de carácter anfipático, en donde la porfirina actúa como polo hidrófilo y el fitol como polo lipófilo. Se distinguen dos variedades de clorofila: la clorofila a, que alberga un grupo metilo en el tercer carbono porfirínico y que absorbe luz de longitud de onda cercana a 630 nm, y la clorofila b, que contiene un grupo formilo y que absorbe a 660 nm.

Los carotenoides son isoprenoides y absorben luz de 440 nm, pudiendo ser de dos clases: los carotenos, que son de color rojo, y las xantófilas, derivados oxigenados de los nombrados anteriormente, que son de color amarillento. Las ficocianinas y las ficoeritrinas, de color azul y rojo respectivamente, son lípidos que se hayan asociados a proteínas originando las ficobiliproteínas.

Como los pigmentos fotosintéticos tienen enlaces covalentes sencillos que se alternan con enlaces covalentes dobles, se favorece la existencia de electrones libres que no pueden atribuirse a un átomo concreto.

Cuando incide un fotón sobre un electrón de un pigmento fotosintético de antena, el electrón capta la energía del fotón y asciende a posiciones más alejadas del núcleo atómico. En el supuesto caso de que el pigmento estuviese aislado, al descender al nivel inicial, la energía captada se liberaría en forma de calor o de radiación de mayor longitud de onda (fluorescencia). Sin embargo, al existir diversos tipos de pigmentos muy próximos, la energía de excitación captada por un determinado pigmento puede ser transferida a otro al que se induce el estado de excitación. Este fenómeno se produce gracias a un estado de resonancia entre la molécula dadora relajada y la aceptora. Para ello se necesita que el espectro de emisión del primero coincida, al menos en parte, con el de absorción del segundo. Los excitones se transfieren siempre hacia los pigmentos que absorben a mayor longitud de onda, continuando el proceso hasta alcanzar el pigmento fotosintético diana

.Factores externos que influyen en el proceso

Mediante la comprobación experimental, los científicos han llegado a la conclusión de que la temperatura, la concentración de determinados gases en el aire (tales como dióxido de carbono y oxígeno), la intensidad luminosa y la escasez de agua son aquellos factores que intervienen aumentando o disminuyendo el rendimiento fotosintético de un vegetal.

• La temperatura: cada especie se encuentra adaptada a vivir en un intervalo de temperaturas. Dentro de él, la eficacia del proceso oscila de tal manera que aumenta con la temperatura, como consecuencia de un aumento en la movilidad de las moléculas, en la fase oscura, hasta llegar a una temperatura en la que se sobreviene la desnaturalización enzimática, y con ello la disminución del rendimiento fotosintético

• La concentración de dióxido de carbono: si la intensidad luminosa es alta y constante, el rendimiento fotosintético aumenta en relación directa con la concentración de dióxido de carbono en el aire, hasta alcanzar un determinado valor a partir del cual el rendimiento se estabiliza.15 16

• La concentración de oxígeno: cuanto mayor es la concentración de oxígeno en el aire, menor es el rendimiento fotosintético, debido a los procesos de fotorrespiración.15

• La intensidad luminosa: cada especie se encuentra adaptada a desarrollar su vida dentro de un intervalo de intensidad de luz, por lo que existirán especies de penumbra y especies fotófilas. Dentro de cada intervalo, a mayor intensidad luminosa, mayor rendimiento, hasta sobrepasar ciertos límites, en los que se sobreviene la fotooxidación irreversible de los pigmentos fotosintéticos. Para una igual intensidad luminosa, las plantas C4 (adaptadas a climas secos y cálidos) manifiestan un mayor rendimiento que las plantas C3, y nunca alcanzan la saturación lumínica.15 16

• El tiempo de iluminación: existen especies que desenvuelven una mayor producción fotosintética cuanto mayor sea el número de horas de luz, mientras que también hay otras que necesitan alternar horas de iluminación con horas de oscuridad

• La escasez de agua: ante la falta de agua en el terreno y de vapor de agua en el aire disminuye el rendimiento fotosintético. Esto se debe a que la planta reacciona, ante la escasez de agua, cerrando los estomas para evitar su desecación, dificultando de este modo la penetración de dióxido de carbono. Además, el incremento de la concentración de oxígeno interno desencadena la fotorrespiración. Este fenómeno explica que en condiciones de ausencia de agua, las plantas C4 sean más eficaces que las C3.15 16

• El color de la luz: la clorofila α y la clorofila β absorben la energía lumínica en la región azul y roja del espectro, los carotenos y xantofilas en la azul, las ficocianinas en la naranja y las ficoeritrinas en la verde. Estos pigmentos traspasan la energía a las moléculas diana. La luz monocromática menos aprovechable en los organismos que no tienen ficoeritrinas y ficocianinas es la luz. En las cianofíceas, que si poseen estos pigmentos anteriormente citados, la luz roja estimula la síntesis de ficocianina, mientras que la verde favorece la síntesis de ficoeritrina. En el caso de que la longitud de onda superase los 680 nm, no actúa el fotosistema II con la consecuente reducción del rendimiento fotosintético al existir únicamente la fase luminosa cíclica

Fotosíntesis anoxigénica o bacteriana

Las bacterias únicamente son poseedoras de fotosistemas I, de manera que al carecer de fotosistemas II no están capacitadas para usar al agua como dador de electrones (no hay fotólisis del agua), y en consecuencia, no producen oxígeno al realizar la fotosíntesis. En función de la molécula que emplean como dador de electrones y el lugar en el que acumulan sus productos, es posible diferenciar tres tipos de bacterias fotosintéticas: las sulfobacterias purpúreas se caracterizan por emplear sulfuro de hidrógeno (H2S) como dador de electrones y por acumular el azufre en gránulos de azufre en su interior; las sulfobacterias verdes también utilizan al sulfuro de hidrógeno, pero a diferencia de las purpúreas no acumulan azufre en su interior; y finalmente, las bacterias verdes carentes de azufre usan materia orgánica, tal como ácido láctico, como donadora de electrones.

En las bacterias purpúreas, los fotosistemas I están presentes en la membrana plasmática, mientras que en las bacterias verdes, estos se encuentran en la membrana de ciertos orgánulos especiales. Los pigmentos fotosintéticos están constituidos por las bacterioclorofilas a, b, c, d y e, así como también por los carotenos; por otra parte, lo más frecuente es que la molécula diana sea la denominada P890.

Al igual que sucede en la fotosíntesis oxigénica, existe tanto una fase dependiente de luz como una independiente de luz, distinguiéndose en la primera un transporte de electrones acíclico y otro cíclico. Mientras en el cíclico únicamente se obtiene ATP, en el acíclico se reduce el NAD+ a NADH, que posteriormente es empleado para la reducción del CO2 , NO3-, entre otros. El NADH también puede ser obtenido en ausenca de luz, gracias al ATP procedente del proceso cíclico.

Fotosíntesis artificial

Actualmente, existe un gran número de proyectos químicos destinados a la reproducción artificial de la fotosíntesis, con la intención de poder capturar energía solar a gran escala en un futuro no muy lejano. A pesar de que todavía no se ha conseguido sintetizar una molécula artificial capaz de perdurar polarizada durante el tiempo necesario para reaccionar de forma útil con otra moléculas, las perspectivas son prometedoras y los científicos son optimistas.18

CONCLUSIONES

1. Absorción de la luz y pigmentos fotosintéticos: las clorofilas participan directamente en la fotosíntesis por medio de la absorción de ciertas longitudes de onda visibles de energía radiante.

2. Las longitudes de onda más efectivas para la fotosíntesis son las del rojo y el azul.

3. Una gran cantidad de los componentes verdes de la luz visible, los cuales llegan a la hoja , no son utilizados en la fotosíntesis debido a que la luz verde no es absorbida. Esto sucede por que la hoja es verde.

4. Los pigmentos carotenoides amarillos y anaranjados formados de carotenos y xantófilas (derivadas de la vitamina A) siempre están presentes en los cloroplastos. Al menos en ciertas algas, estos pigmentos parece que absorben también la luz para el proceso fotosintético. De manera semejante, algunos pigmentos exclusivos de ciertas algas, tales como la ficocianina de las algas azules y ciertas algas rojas, la ficoxantina de las algas pardas de la ficoeritrina de las algas rojas y ciertas algas azules parecen también tener la misma función. Sin embargo, estos pigmentos son incapaces de sustituir completamente a la clorofila en su vital papel fotosintético. No se ha encontrado ninguna planta capaz de efectuar la fotosíntesis que no posea al menos uno de los pigmentos clorofílicos.

BIBLIOGRAFÍA

 J. Azcón-Bieto, M. Talón (eds.). Fundamentos de Fisiología Vegetal. Madrid: McGraw-Hill/Interamericana, Edicions Universitat de Barcelona, 2000.

 B.B. Buchanan, W. Gruissem, R. Jones. Biochemistry and Molecular Biology of plants. Rockville (USA): American Society of Plant Physiologists, 2000.

 D. T. Dennis and D.H. Turpin (eds). Plant metabolism. Plant physiology, Biochemistry, and Molecular Biology. Orlando, USA: Academic Press, 1998.

 H.W. Heldt. Plant Biochemistry and Molecular Biology. Oxford (U.K.): Oxford University Press, 2004.

ENLACES ELECTRÓNICOS

 http://recursostic.educacion.es/ciencias/biosfera/web/alumno/2bachillerato/La_celula/contenidos13.htm

 http://es.wikipedia.org/wiki/Cloroplasto

 http://www.infobiologia.net/p/cloroplastos.html

 http://www.botanica.cnba.uba.ar/Pakete/3er/LaCelula/Cloroplastos.htm

...

Descargar como  txt (34.8 Kb)  
Leer 21 páginas más »
txt