ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Como Sintetizar Un Material Elastico

Documentos de Investigación : Como Sintetizar Un Material Elastico. Ensayos de Calidad, Tareas, Monografias - busque más de 2.328.000+ documentos.

Enviado por   •  22 de Febrero de 2012  •  3.526 Palabras (15 Páginas)  •  2.544 Visitas

Página 1 de 15

Introduccion

A lo largo de cientos de años se han utilizado polímeros naturales procedentes de plantas y animales. Estos materiales incluyen madera, caucho, lana, cuero y seda. Otros polímeros naturales tales como las proteínas, las enzimas, los almidones y la celulosa tienen importancia en los procesos bioquímicos y fisiológicos de plantas y animales. Desde principios del siglo XX, la moderna investigación científica ha determinad la estructura molecular de este grupo de materiales y ha desarrollado numerosos polímeros, sintetizados a partir de pequeñas moléculas orgánicas. Muchos plásticos, cauchos y materiales fibrosos son polímeros sintéticos. Desde el fin de la segunda guerra mundial, el campo de los materiales se ha visto revolucionado por la llegada de polímeros sintéticos. Las síntesis suelen ser baratas y la propiedades conseguidas comparables, y a veces superiores, a las de los análogos naturales. En algunas aplicaciones, los metales y la madera se sustituyen por polímeros, que tienen propiedades idóneas y se pueden fabricar a bajo costo.

Las propiedades de los polímeros, como en el caso de los metales y de las cerámicas, están relacionadas con la estructura elemental del material.

Características

Las propiedades mecánicas de los polímeros se especifican con los mismos parámetros utilizados para los metales: modulo elástico y resistencia a la tracción, al impacto y a la fatiga. El ensayo esfuerzo-deformación se emplea para caracterizar parámetros mecánicos de muchos materiales poliméricos. La mayoría de las características mecánicas de los polímeros son muy sensibles a la velocidad de deformación, a la temperatura y a la a naturaleza química del medio (presencia de agua, oxigeno, disolventes orgánicos, etc.) en los materiales de alta elasticidad, como las gomas, conviene modificar las técnicas de ensayo o la forma de las probetas utilizadas para los metales.El modulo de elasticidad, la resistencia a la tracción y la ductilidad (en porcentaje de alargamiento) de los polímeros se denomina como en los metales. Los polímeros son, en muchos aspectos, mecánicamente distintos de los metales. Por ejemplo, el modulo elástico de los polímeros de alta elasticidad es del orden de 7Mpa y el de los de baja elasticidad de 4*103 MPa, mientras que en los metales los valores del modulo elástico son mayores y el intervalo de variación es menor: va de 48*103 410*103 MPa. La resistencia máxima a la tracción de los polímeros es del orden de 100MPa, mientras que la de algunas aleaciones metálicas es de 4100 MPa.

La elongación plástica de los metales raramente es superior al 100%, mientras que algunos polímeros de alta elasticidad puede experimentar elongaciones del 1000%.

Las características mecánicas de los polimeros son muchos mas sensibles a las variacions de temperatura, en condiciones ambientales, que las de los metales. Al observar el comportamiento esfuerzo-deformacion del poli(metacrilato de metilo)(Plexiglas) a temperaturas comprendidas entre 4 y 60°C se aprecia que el incremento de temperatura produce (1) disminución del modulo elastico, (2) disminución de la resisitencia a la traccion y (#) aumento de la ductilidad: el polimero es totalmente frágil a 4°C mientras que a 50 y 60 °C experimenta una considerable deformación plastica.

La influencia de la velocidad de deformación puede tambien ser importante en el comportamiento mecanico. Generalmente la dismiucion de la velocidad de deformación tiene el mismo efecto que el aumento de la temperatura en el comportamiento esfuerzo-deformacion, es decir, el material se comporta como mas blando mas dúctil.

El conocimiento de los mecanismos de la deformación contribuye a controlar las caracteristicas mecanicas de estos materiales. En este sentido existen dos modelos de deformación diferentes. Uno de ellos implica la deformación plastica que ocurre en los polimeros semicristalinos. La caracteristica mas importante de estos materiales suele ser la resistencia. Por otro lado, los elastómeros se utilizan por sus excepcionales propiedades de elasticidad.

Polimeros termoplásticos y termoestables

Una forma de clasificar los polimeros es según su respuesta mecanica frente a temperaturas elevadas. En esta clasificacion existen dos subdivisiones: los polimeros termoplásticos y los polimeros termoestables. Los termoplásticos se ablandan al calentarse (a veces funden) y se endurecen al enfriarse (estos procesos son totalmente reversibles y pueden repetirse). Estos materiales normalmente se fabrican con aplicación simultanea de calor y de presion. A nivel molecular, a medida que la temperatura aumenta, la fuerza de los enlaces secundarios se debilita (por que la movilidad molecular aumenta) y esto facilita el movimiento relativo de las cadenas adyacentes al aplicar un esfuerzo . la degradación irreversible produce cuando la temperatura de un termoplástico fundido se eleva hasta el punto que las vibraciones moleculares son tan violentas que pueden romper los enlaces covalentes.

Los termoplásticos son relativamente blandos y dúctiles. La mayoria de los polimeros lineales y los que tienen estructuras ramificadas con cadenas flexibles son termoplásticos.

Los polimeros termoestables se endurecen al calentarse y no se ablandan al continuar calentando. Al iniciar el tratamiento termico se origina entrecruzamientos covalente entre cadenas moleculares contiguas. Estos enlaces dificultan los movimientos de vibracion y de rotacion de las cadenas a elevadas temperaturas. Generalmente el entrecruzamiento es extenso: del 10 al 50% de las unidades monometricas de las cadenas estan entrecruzadas. Solo el calentamiento a temperaturas excesivamente altas causa rotura de estos enlaces entrecruzados y degradacion del polimero. Los polimeros termoestables generalmente son mas duros, resistentes y msa fragiles que los termoplásticos y tienen mejor estabilidad dimensional. La mayoria de los polimero entrecruzados y reticulados, como el caucho vulcanizado, los epoxi y las resinas fenolicas y de poliéster, son termoestables.

Viscoelasticidad

Un polimero amorfo se compoirta como un vidrio a baja temperatura, como un solido gomoelastico a temperaturas intermedias (por encima de la temperatura de transición vitrea) y como un liquido viscoso a temperaturas elevadas. Frente a deforamcaicones relativamente pequeñas, el comportamiento mecanico a bajas temperaturas es elastico y cumple la ley de Hooke. A temperaturas muy elevadas prevalece el comportamiento viscoso o liquido elastico. A temperaturas intermedias aparece un solido, como de goma, que presenta caracteristicas mecanicas intermedias entre estos dos extremos: esta

...

Descargar como (para miembros actualizados)  txt (24.1 Kb)  
Leer 14 páginas más »
Generador de citas

(2012, 02). Como Sintetizar Un Material Elastico. ClubEnsayos.com. Recuperado 02, 2012, de https://www.clubensayos.com/Ciencia/Como-Sintetizar-Un-Material-Elastico/145297.html

"Como Sintetizar Un Material Elastico" ClubEnsayos.com. 02 2012. 2012. 02 2012 <https://www.clubensayos.com/Ciencia/Como-Sintetizar-Un-Material-Elastico/145297.html>.

"Como Sintetizar Un Material Elastico." ClubEnsayos.com. ClubEnsayos.com, 02 2012. Web. 02 2012. <https://www.clubensayos.com/Ciencia/Como-Sintetizar-Un-Material-Elastico/145297.html>.

"Como Sintetizar Un Material Elastico." ClubEnsayos.com. 02, 2012. consultado el 02, 2012. https://www.clubensayos.com/Ciencia/Como-Sintetizar-Un-Material-Elastico/145297.html.