ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Corrosion Y Desgaste

eddymarperez13 de Junio de 2013

3.241 Palabras (13 Páginas)553 Visitas

Página 1 de 13

La ecuación de Nerst

la ecuación de Nernst se utiliza para calcular el potencial de reducción de un electrodo fuera de las condiciones estándar (concentración 1 M, presión de 1 atm, temperatura de 298 K ó 25 ºC). Se llama así en honor al científico alemán Walther Nernst, que fue quien la formuló.

Ecuación[editar]

Donde:

E es el potencial corregido del electrodo.

E el potencial en condiciones estándar (los potenciales se encuentran tabulados para diferentes reacciones de reducción).

R la constante de los gases.

T la temperatura absoluta (escala Kelvin).

n la cantidad de electrones que participan en la reacción.

F la constante de Faraday (aproximadamente 96500 C/mol).

Ln(Q) es el logaritmo neperiano de Q que es el cociente de reacción.

Así para la reacción a*A + b*B → c*C + d*D, la expresión de Q es:

Donde "[C]" y "[D]" son las presiones parciales y/o concentraciones molares en caso de gases o de iones disueltos, respectivamente, de los productos de la reacción; "[A]" y "[B]" ídem para los reactivos. Los exponentes son la cantidad de moles de cada sustancia implicada en la reacción (coeficientes estequiométricos). A las sustancias en estado sólido se les asigna concentración unitaria, por lo que no aparecen en Q.

En realidad, los potenciales de las células electroquímicas están relacionados con las actividades de los reactivos y los productos de la reacción, que a su vez están relacionadas con las respectivas concentraciones molares. No obstante, con frecuencia se hace la aproximación de que las actividades son iguales a las concentraciones molares, pero es conveniente tener en cuenta que esto es una aproximación y que como tal, puede conducir a resultados erroneos. Para una reacción genérica:

La constante de equilibrio para esta reacción viene dada por:

Donde es la actividad de la especie "j"

Además se define Q como:

Donde el subíndice ins indica que las actividades son instantáneas y no las actividades de equilibrio. Por tanto, no es una constante, sino que está cambiando de forma continua hasta que se alcanza el equilibrio y entonces . El máximo trabajo que puede obtenerse, a presión y temperatura constantes, de una celda viene dado por la variación de energía libre,

Por otra parte, el potencial de celda se relaciona con la variación de energía libre mediante la ecuación:

Donde

" " es 96485 culombios por mol de electrones y " " es el número de electrones asociados al proceso

Combinando las dos ecuaciones anteriores se obtiene:

El término " " se denomina potencial estandar de electrodo de celda,

Por lo que, la ecuación de Nernst queda:

Como puede observarse, cuando los reactivos y productos tienen valores de actividad tales que , entonces el potencial de celda es igual al potencial estandar. Aproximando la actividad a concentración molar y teniendo en cuenta que los valores de concentración son instantáneos se obtiene la expresión:

Aplicación a pilas[editar]

La fuerza electromotriz de una pila se calcula con la siguiente expresión:

Ambos potenciales de reducción se calculan con la ecuación de Nernst, por lo tanto sacando factor común y operando con los logaritmos se obtiene la siguiente ecuación:

Donde " E" es la diferencia de potencial corregida de la pila y " E la diferencia de potencial de la pila en condiciones estándar, es decir calculada con las reacciones tabuladas, sin corregir con la ecuación de Nernst para electrodos.

Ejemplo de aplicación[editar]

En la pila de reacción se intercambian 6 electrones, por lo tanto y

Donde [ ] denota concentración.

Si sólo se busca el potencial corregido del cátodo (reducción) entonces debido a que la reacción de reducción tiene como producto Zn sólido, al cual se le asigna concentración unitaria.

Simplificación por temperatura estándar[editar]

Teniendo en cuenta los valores de las constantes universales R y F en la ecuación de Nernst, el factor 2,302 para el cambio de logaritmo neperiano a logaritmo decimal y sabiendo que a temperatura estándar de 25 º C, la temperatura absoluta es T = 298 K la ecuación se reduce a:

Estas versiones simplificadas son las más utilizadas para electrodos y pilas a temperatura ambiente puesto que el error que se produce por diferencias entre la temperatura real y la expresada en la ecuación es despreciable.

Unidades[editar]

La unidad del potencial de reducción se expresa en voltios (V).

Las concentraciones no incluyen las unidades, por lo que el argumento del logaritmo es adimensional.

Ejercicios

Todos los potenciales que hemos calculado hasta ahora son en condiciones estándar, es decir, T= 25ºC, P= 1 atm (en el caso de gases) y concentración = 1 M. Pero los potenciales dependen de las concentraciones, y esa dependencia viene dada por la ecuación de Nerst. Por ejemplo, para la reacción:

aA + bB cC + dD

donde "n" es el número de electrones que se intercambian en la reacción. Por ejemplo, el potencial para la siguiente semirreacción será:

Fe+3 + 1 e Fe+2

donde n = 1 ya que se intercambia un electrón en el proceso. Veámoslo con otro ejemplo:

MnO4- + 8 H+ + 5 e Mn+2 + 4 H2O

observa que, al igual que en las constantes de acidez (y basicidad), la concentración de agua no aparece en la expresión del potencial.

La ecuación de Nerst también nos sirve para calcular constantes de equilibrio, ya que de la ecuación general anterior se deduce que:

teniendo en cuenta que cuando se alcance el equilibrio el potencial de la pila obtenido con los pares de la reacción estudiada será nulo, y despejando el valor de la constante de equilibrio:

Vamos a calcular la constante de equilibrio para una reacción concreta:

H2O2 + Cr2O7-2 + H+ Cr+3 + O2 + H2O

para ello nos dan como datos:

Eº (Cr2O7-2/ Cr+3 ) = 1'33 V

Eº (O2/H2O2) = 0'68 V

como el ion dicromato posee un mayor potencial de reducción, será éste quién se reduzca, mientras que el agua oxigenada se oxidará, por lo tanto el potencial estándar de la reacción será:

Eº = 1'33 0'68 = 0'65 V

a continuación hay que ajustar la reacción para ver cuántos electrones son intercambiados:

reducción: Cr2O7-2 + 14 H+ + 6 e- 2 Cr+3 + 7 H2O (1)

oxidación: H2O2 O2 + 2 H+ + 2 e- (2)

multiplicando la ecuación (2) por tres y sumándolas, resulta:

3 H2O2 + Cr2O7-2 + 8 H+ 2 Cr+3 + 3 O2 + 7 H2O

en la que se intercambian 6 electrones, por lo tanto, aplicando la ecuación de Nerst:

comprueba que como valor de “n” hemos puesto un 6 puesto que en la reacción se intercambian 6 electrones (aunque en la reacción global no aparezcan). Despejando el valor de la constante de equilibrio:

como la reacción posee una constante de equilibrio muy grande, estará muy desplazada hacia la derecha.

Fuerza electro motriz

Concepto de Fuerza electromotriz .

El término fuerza electromotriz se utiliza para referirse a la capacidad que tienen algunos aparatos para movilizar la carga eléctrica. Por ejemplo, las pilas, los acumuladores o baterías de automóvil, el generador o alternador de un automóvil o de una represa hidroeléctrica o de una planta termoeléctrica, las baterías solares de una nave espacial, los transformadores, son todos dispositivos o aparatos diseñados para poner la carga eléctrica en movimiento y se les llama fuentes de fuerza electromotriz.

Se supone que en su esencia, estos aparatos ejercen una fuerza sobre las cargas eléctricas y las ponen en movimiento, de allí el nombre de generadores de fuerza electromotriz. Sin embargo la magnitud de la fuerza electromotriz (f.e.m.) no se mide a través de la fuerza eléctrica sino por medio de la energía que estos aparatos utilizan para mover una unidad de carga.

Tipos de Fuentes de Fuerza electromotriz.Dependiendo del tipo de corriente eléctrica que pueden producir se clasifican en tres tipos:

a) Fuentes de Fuerza Electromotriz directa (C.D ) como las pilas, acumuladores, baterias solares y otros que se mencionaran más adelante. En este caso la corriente que producen es de un valor constante dentro de un intervalo relativamente grande. Ejemplo de este tipo de fuentes se muestran en las fotografías siguientes.

b) Fuentes de Fuerza Electromotriz alterna (C.A) como los generadores eléctricos de los carros que son los encargados de proporcionar electricidad, cuando el vehículo está en funcionamiento o como las plantas generadoras de electricidad doméstica. Se diferencian de los anteriores por que la corriente que producen es variable en el tiempo, no sólo en magnitud sino también de dirección. Su funcionamiento esta apoyado en el principio de las Corrientes Inducidas descubierto por Faraday. En la figura siguiente se muestra una manera de inducir corrientes eléctricas alternas.

c) Fuentes de Fuerza Electromotriz variable no alterna. En este caso la corriente producida es variable, por ejemplo: el encendedor

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com