Cuadernillo de Mate Para Facultad
xXdannyXx60Examen28 de Septiembre de 2016
39.782 Palabras (160 Páginas)306 Visitas
Nombre: ______________________________________________Matrícula:_____________Gpo._____
APELLIDO PATERNO / APELLIDO MATERNO / NOMBRE(S)
I.- Elige del recuadro la respuesta que completa la información:
Relación | Función cuadrática | Rango | Variable independiente | Función |
[pic 4] | Dominio | [pic 5] | Variable dependiente | Desigualdad |
, con y constantes con [pic 6][pic 7][pic 8][pic 9] | Variable compleja | Inecuación |
_____________________ se define como un conjunto de pares ordenados.
La variable cuyo universo de definición es el dominio de una relación se define como _______________.
La ___________________ es la variable cuyo universo de definición es el rango de una relación.
______________________ es el conjunto formado por las primeras componentes de los pares ordenados que constituyen una relación.
Al conjunto formado por las segundas componentes de los pares ordenados que constituyen una relación se le denomina ________________
Ecuación general de una función constante ____________
__________________ representa la ecuación de la función identidad.
Ecuación ordinaria de una función lineal _____________________
Se llama _______________ a cualquier expresión que hace referencia a la relación entre dos números y que por lo tanto lleva el signo de “<” o “>”.
Se llama _______________ a aquella desigualdad en la que aparece una incógnita.
Una ______________________ se representa con la ecuación general de la forma , con y constantes con [pic 10][pic 11][pic 12][pic 13]
II.- Determina el dominio y rango de las siguientes relaciones, posteriormente identifica si la relación dada es una función.
- [pic 14]
Dominio:_______________________ Rango:________________________
______ es función
- [pic 15]
Dominio:_______________________ Rango:________________________
______ es función
[pic 16][pic 17][pic 18][pic 19]
- d)[pic 20]
[pic 21]
Dominio:_______________________ Dominio:_______________________
Rango:________________________ Rango:________________________
_____ es función. _____ es función.
e) f) [pic 22][pic 23][pic 24]
[pic 25][pic 26]
[pic 27]
Dominio:_______________________ Dominio:_______________________
Rango:________________________ Rango:________________________
_____ es función. _____ es función.
[pic 28]
g) Dominio:_______________________[pic 29]
Rango:________________________
_____ es función.
[pic 30][pic 31]
h) Dominio:_______________________
Rango:________________________
_____ es función.
[pic 32][pic 33]
i) j) [pic 34][pic 35]
[pic 36]
Dominio:_______________________ Dominio:_______________________
Rango:________________________ Rango:________________________
_____ es función. _____ es función.
III.- Determina los elementos de la recta.
- [pic 37]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 38]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 39]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 40]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 41]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 42]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 43]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
- [pic 44]
La pendiente: _________ La intersección en “y”: ________ La intersección en “x” : ________
IV.- Encuentra la ecuación de la recta…
- En forma pendiente- intersección y que pasa por (-1,3) y (2,-3).
- En forma general que posee pendiente 2 y ordenada -1.
- En forma simétrica si su ecuación general está dada por [pic 45]
- En su ecuación general si su forma simétrica está dada por [pic 46]
- Simétrica si pasa por (4,0) y posee ordenada en -6
- Ordinaria si posee pendiente -6 y pasa por (-2,0)
- Ecuación simétrica si pasa por (3,0) y es paralela a [pic 47]
- Paralela a la recta y pasa por el punto (-2,0)[pic 48]
- Perpendicular a la recta y con ordenada -2.[pic 49]
- Pendiente intersección si es paralela a y pasa por (3,-2)[pic 50]
- General si pasa por (-2,4) y es perpendicular a la recta [pic 51]
V.- Resuelve los siguientes problemas de aplicación de la función lineal.
- Una casa tiene 18 años de uso es valuada en $724,000 actualmente, pero hace 5 años su costo era de $552,000. Si el valor de la casa crece linealmente con el tiempo, ¿cuál fue el valor cuando era nueva?
- El costo de una pizza con un ingrediente es de $70 más $7 por ingrediente adicional.
- ¿Cuánto pagará un consumidor que pide una pizza de 7 ingredientes?
- Considerando que una persona pagó $119, ¿cuántos ingredientes tiene su pizza?
- El valor de un automóvil nuevo es de $354,500. Si su valor se deprecia un 7% por año, determina:
- La expresión que relaciona el costo del valor del auto y el tiempo en años de uso.
- El valor del auto después de 6 años.
- ¿Después de cuántos años de uso el valor del automóvil se reduce a la mitad?
VI.- Traza las gráficas de las ecuaciones dadas en un mismo plano sin tabular.
- [pic 52]
- [pic 53]
- [pic 54]
VII.- Resuelve las siguientes desigualdades y representa su solución de manera gráfica y en forma de intervalo.
- [pic 55]
- [pic 56]
- [pic 57]
- [pic 58]
- [pic 59]
VIII.- Determina gráficamente el conjunto solución de las siguientes inecuaciones.
- [pic 60]
- [pic 61]
- [pic 62]
- [pic 63]
- [pic 64]
IX.- Identifica los elementos necesarios para cada función cuadrática.
- [pic 65]
- Intersección con el eje “y”:
- Intersecciones con el eje “x”:
- Determina las coordenadas del vértice:
- La ecuación del eje de simetría
- Escribe la ecuación en forma vértice o estándar
- Determina el rango de la función
- Traza la gráfica
- [pic 66]
- Intersección con el eje “y”:
- Intersecciones con el eje “x”:
- Determina las coordenadas del vértice:
- La ecuación del eje de simetría
- Escribe la ecuación en forma vértice o estándar
- Determina el rango de la función
- Traza la gráfica
X.- Encuentra la expresión de la función cuadrática cuya gráfica pasa por los puntos dados:
a) (-1,27) ; (0,12) y (2,0)
b) Origen, (4,2) y (8,0)
- Vértice en (-2,3) y pasa por el origen.
XI.- .- Resuelve las siguientes ecuaciones cuadráticas:
...