ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Diseño Mecanico


Enviado por   •  30 de Julio de 2014  •  1.579 Palabras (7 Páginas)  •  184 Visitas

Página 1 de 7

vibraciones longitudinales en el elemento prismático( barra).

las vibraciones longitudinales en una barra se producen cuando una fuerza externa actúa sobre la barra de forma que cambia su longitud y volumen, sin alterar su forma. si consideramos que no hay rozamiento, la variación de longitud en cada diferencial de volumen de la barra se propagará según la ecuación de ondas . el estudio de estas vibraciones nos permite entender mejor la propagación de ondas acústicas en medios confinados, de lo que constituirían un ejemplo. además, tienen aplicaciones prácticas como son la utilización de la frecuencia fundamental de barras circulares de diferentes longitudes para construir normas de frecuencia de tonos definidos, o el uso de la frecuencia de vibración longitudinal de un cristal piezoeléctrico para controlar la frecuencia de una corriente eléctrica o para excitar un transductor electroacústico. también tiene

Aplicaciones en el análisis de la respuesta de estructuras formadas por barras, o que se puedan modelar como barras con cargas másicas en los extremos, a fuerzas externas. En el trabajo que aquí presentamos pretendemos estudiar, en un primer acercamiento, la

propagación de ondas longitudinales en barras, utilizando para ello el método de simulación por

redes.

El método de simulación por redes esta basado en la obtención de un modelo en red equivalente al

proceso en estudio y su posterior simulación con un programa adecuado de resolución de circuitos

eléctricos. En nuestro caso se ha usado el programa PSPICE [3], con el que podemos encontrar

como evolucionan los potenciales y corrientes del circuito con el tiempo, potenciales y corrientes

que representan a las variables de interés para nosotros.

Modelo en Red

Para la obtención del modelo en red equivalente, partimos del modelo matemático que

proporciona la descripción local del proceso y se elabora la celda en red elemental, es decir, la que

corresponde al proceso localizado en un volumen elemental. La asociación de tales redes

elementales viene a describir el proceso en cuestión en un medio finito, descripción tanto más

exacta cuanto mayor sea el numero de redes elementales que se conecten [4].

En el caso de la propagación de ondas elásticas a lo largo de una barra, la ecuación que describe el

proceso es la ecuación de ondas:

2

2

2 2

2

c t

1

x ∂

∂ ξ

=

∂ ξ

(1)

siendo ξ la elongación, x la posición, t el tiempo y c la velocidad de propagación de la onda. El primer paso para obtener la celda en red elemental consiste en realizar la discretización

espacial. Dividamos la región espacial bajo estudio en N compartimentos de espesor ∆x. Si se

define la variable flujo como:

x

j Y

∂ξ

= − (2)

sustituyendo en la ecuación de ondas obtenemos:

0

2

t

2

x

j

=

∂ ξ

+ ρ

(3)

Esta derivada será aproximada por la diferencia finita de las corrientes que circulan por la

izquierda y derecha de la celda, con lo que la única derivada parcial que nos queda es con respecto

al tiempo:

0

t

j j x

2

2

i i

=

∂ ξ

−∆ − +∆ −ρ∆ (4)

Podemos considerar esta ecuación como una relación de flujos entrantes y salientes dentro de cada

compartimento, de forma que podemos rescribirla como:

j j j 0 i−∆ − i+∆ − γi

= (5)

con

2

2

i

t

j x

∂ ξ

γ

=ρ∆ (6)

Una vez realizada la discretización espacial, y establecidas las analogías correspondientes entre

ecuaciones del sistema y ecuaciones de elementos de circuitos, el modelo en red obtenido,

siempre teniendo en cuenta el obligado cumplimiento de las leyes de Kirchhoff, es el siguiente: E-GLEA 2

M.T. García Hernández et al 51

ξ i

Figura 1. Modelo en red elemental

Esta es la red elemental que deberá asociarse N para obtener la descripción del proceso.

Obviamente, la completa equivalencia del modelo debe pasar por la incorporación de las

condiciones iniciales y de contorno correspondientes a cada sistema particular.

Barra Forzada-Fija

Hemos implementado distintas condiciones en una barra [1]. En primer lugar simulamos una barra

inicialmente en equilibrio con el extremo izquierdo sometido a una fuerza externa sinusoidal y el

otro extremo fijo. Esto supone que debemos fijar la corriente del extremo izquierdo con una

fuente de corriente sinusoidal y que el potencial (la elongación) del extremo derecho sea siempre

cero, por lo que conectamos ese extremo a tierra. En la Figura 2 mostramos el modelo en red de

esas condiciones de contorno.

X=0 X=L

Figura 2. Modelado de las condiciones de contorno: extremo forzado y extremo fijo E-GLEA 2

52 M.T. García Hernández et al

A continuación, presentamos los resultados obtenidos al simular la barra forzada-fija, de aluminio

y de un metro de largo, en la posición x=0.5 m (centro de la barra):

Figura 3. Resultado de la simulación en x=0.5 m al aplicar una fuerza sinusoidal de frecuencia 25

Hz

Figura 4. Resultado de la simulación en x=0.5 m al aplicar una fuerza sinusoidal de frecuencia

25000 Hz

Para una frecuencia de excitación baja, de 25 Hz, se observa que ese trozo de barra vibra de forma

sinusoidal con la misma frecuencia con que estamos excitando la barra, aunque si ampliamos la

imagen vemos que aparecen pequeñas oscilaciones cuya frecuencia se encuentra sobre los 1300

Hz. Si repetimos la simulación con una frecuencia mucho más alta, de 25000 Hz, vemos que la

vibración es ahora mucho más compleja, aunque presenta un comportamiento periódico. Al hacer

0,0 0,1 0,2 0,3 0,4 0,5

-8,0x10-7

-6,0x10-7

-4,0x10-7

-2,0x10-7

0,0

2,0x10-7

4,0x10-7

6,0x10-7

8,0x10-7

ξ (m)

t(s)

0,000 0,002 0,004 0,006 0,008 0,010

-1,5x10-9

-1,0x10-9

-5,0x10-10

0,0

5,0x10-10

1,0x10-9

1,5x10-9

ξ (m)

t (s)E-GLEA 2

M.T. García Hernández et al 53

la transformada de Fourier de esta señal, encontramos un pico muy alto en la frecuencia de 1287

Hz, que corresponde a la frecuencia de resonancia de la barra, y una serie de picos más bajos en

los siguientes armónicos, aparte de un pico que aparece en 25000 Hz. La explicación de este

diferente comportamiento a alta y baja frecuencia se debe a que a 25000 Hz excitamos los

distintos armónicos de la barra de una forma muy fuerte, mientras que a 25 Hz esto la excitación

de esos armónicos es muy débil, de forma que solo se excita el primer armónico y con muy poca

intensidad. Así, la vibración prácticamente se produce a la frecuencia a la que excitamos la barra.

Hemos comprobado que las vibraciones más importantes son las producidas por la frecuencia de

excitación y el primer armónico. Este hecho nos parece particularmente interesante, ya que nos

permite establecer que las características de la onda dependen mucho de la frecuencia a la que

excitamos la barra, de forma que las vibraciones son muy distintas. Además, como haciendo la

transformada de Fourier de la señal es fácil identificar los modos de vibración que se producen,

podemos conocer las frecuencias de resonancia de la barra hasta la frecuencia límite que

queramos simplemente excitando la barra con esa frecuencia límite.

En los dos casos lo que si se produce es una reflexión total de la onda al llegar al extremo fijo, de

forma que el movimiento vibratorio en las dos frecuencias es consecuencia de la superposición de

la onda incidente y de las sucesivas ondas reflejadas.

Figura 5. Transformada de Fourier de la señal obtenida con f=25000 Hz

Según lo expuesto, al excitar el extremo de la barra a la frecuencia de resonancia, la barra debería

vibrar únicamente a esa frecuencia. Al realizar la simulación, encontramos que la barra vibra

principalmente a la frecuencia de resonancia, pero va variando su amplitud como si hubiera

también una frecuencia mucho más baja que estuviera modulando al seno, como en el fenómeno

de las pulsaciones. Al realizar la transformada de Fourier encontramos que hay dos picos de casi

la misma altura muy cercanos entre si en la frecuencia de resonancia, por lo que interpretamos que

lo que pasa es que al llegar la vibración al extremo derecho y reflejarse, se comete un pequeño

error que hace que la frecuencia de la onda de vuelta sea ligeramente distinta que la de la ida, de

forma que al superponerse produzcan esa onda modulada, como ocurre con las pulsaciones. Este

hecho nos ha servido para poder cuantificar el error cometido por el método, ya que hemos

comprobado como disminuía la frecuencia de modulación al aumentar el número de celdas, ya

que la diferencia entre la frecuencia de ida y la reflejada era menor y por tanto el error cometido

en la reflexión también debía ser menor. La gráfica que mostramos es la que tiene un menor error,

ya que por problemas de memoria computacional no podíamos aumentar más el número de

celdas.

0 5000 10000 15000 20000 25000 30000

0,00E +000

5,00E -011

1,00E -010

1,50E -010

2,00E -010

2,50E -010

3,00E -010

3,50E -010

4,00E -010

Amplitud

Frecuencia (H z)E-GLEA 2

54 M.T. García Hernández et al

Figura 6. Resultado de la simulación en x=0.5 m al aplicar una fuerza sinusoidal de frecuencia

1287.5 Hz (Primer Armónico de la barra)

Una ventaja importante y bonita de usar este método numérico es que podemos estudiar

fácilmente el transitorio del movimiento vibratorio y no solo ver su estado estacionario, lo que nos

permite ver como se genera la onda. En la Figura 7 vemos como es el transitorio que se produce

en el extremo de la barra situado junto a la fuente, cuando excitamos la barra con una frecuencia

de 9012.5 Hz, que corresponde al cuarto armónico de la barra. Se puede observar que la amplitud

de la vibración aumenta cada cierto tiempo, y teniendo en cuenta la velocidad de la onda y la

longitud de la barra, comprobamos que ese tiempo coincide con el que tarda la onda en llegar al

final de la barra y volver. Si simulamos durante más tiempo comprobamos como se forma una

onda similar a la de la gráfica superior, por lo que comprobamos que la forma final de la onda es

el resultado de la suma de todas esas ondas reflejadas.

Figura 7. Transitorio inicial obtenido al aplicar una fuerza sinusoidal de frecuencia 9012.5 Hz (Cuarto

armónico de la barra)

Barra Forzada-Libre

El siguiente caso que simulamos es el de una barra inicialmente en reposo con el extremo

izquierdo sometido a una fuerza sinusoidal y el derecho libre, sin ninguna ligadura. Esta ultima

condición de contorno se traduce en que, al no haber ligadura no se ejerce sobre el extremo

0.00 0.05 0.10 0.15 0.20 0.25

-2.0x10 - 7

-1.5x10 - 7

-1.0x10 - 7

-5.0x10 - 8

0.0

5.0x10 - 8

1.0x10 - 7

1.5x10 - 7

2.0x10 - 7

...

Descargar como  txt (10.5 Kb)  
Leer 6 páginas más »
txt