ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El Origen Del Universo


Enviado por   •  15 de Enero de 2014  •  2.341 Palabras (10 Páginas)  •  315 Visitas

Página 1 de 10

El origen del Universo

Los científicos intentan explicar el origen del Universo con diversas teorías, apoyadas en observaciones y unos cálculos matemáticos coherentes. Las más aceptadas son la del Big Bang y la teoría Inflacionaria, que se complementan entre sí

Teoría del Big Bang

La teoría del Big Bang o gran explosión, supone que, hace entre 13.700 y 13.900 millones de años, toda la materia del Universo estaba concentrada en una zona extraordinariamente pequeña del espacio, un único punto, y explotó. La materia salió impulsada con gran energía en todas direcciones.

Los choques que inevitablemente de se produjeron y un cierto desorden hicieron que la materia se agrupara y se concentrase más en algunos lugares del espacio, y se formaron las primeras estrellas y las primeras galaxias. Desde entonces, el Universo continúa en constante movimiento y evolución.

Esta teoría sobre el origen del Universo se basa en observaciones rigurosas y es matemáticamente correcta desde un instante después de la explosión, pero no tiene una explicación para el momento cero del origen del Universo, llamado "singularidad".

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.

Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.

Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radio astrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Uno de los grandes problemas científicos sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).

Un intento de resolver este problema es determinar si la densidad media de la materia en el Universo es mayor que el valor crítico en el modelo de Friedmann. La masa de una galaxia se puede medir observando el movimiento de sus estrellas; multiplicando la masa de cada galaxia por el número de galaxias se ve que la densidad es sólo del 5 al 10% del valor crítico. La masa de un cúmulo de galaxias se puede determinar de forma análoga, midiendo el movimiento de las galaxias que contiene. Al multiplicar esta masa por el número de cúmulos de galaxias se obtiene una densidad mucho mayor, que se aproxima al límite crítico que indicaría que el Universo está cerrado.

La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.

Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario.

Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.

Teoría inflacionaria

La teoría inflacionaria de Alan Guth intenta explicar el origen y los primeros instantes del Universo. Se basa en estudios sobre campos gravitatorios fortísimos, como los que hay cerca de un agujero negro.

La teoría inflacionaria supone que una fuerza única se dividió en las cuatro que ahora conocemos, produciendo el origen al Universo.

El empuje inicial duró un tiempo prácticamente inapreciable, pero la explosión fue tan violenta que, a pesar de que la atracción de la gravedad frena las galaxias, el Universo todavía crece, se expande.

No se puede imaginar el Big Bang como la explosión de un punto de materia en el vacío, porque en este punto se concentraban toda la materia, la energía, el espacio y el tiempo. No había ni "fuera" ni "antes". El espacio y el tiempo también se expanden con el Universo.

De acuerdo con la teoría de la Gran Explosión o del Big Bang, generalmente aceptada, el Universo surgió de una explosión inicial que ocasionó la expansión de la materia desde un estado de condensación extrema. Sin embargo, en la formulación original de la teoría del Big Bang quedaban varios problemas sin resolver. El estado de la materia en la época de la explosión era tal que no se podían aplicar las leyes físicas normales. El grado de uniformidad observado en el Universo también era difícil de explicar porque, de acuerdo con esta teoría, el Universo se habría expandido con demasiada rapidez para desarrollar esta uniformidad.

Según la teoría del Big Bang, la expansión del universo pierde velocidad, mientras que la teoría inflacionaria lo acelera e induce el distanciamiento, cada vez más rápido, de unos objetos de otros. Esta velocidad de separación llega a ser superior a la velocidad de la luz, sin violar la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz. Lo que sucede es que el espacio alrededor de los objetos se expande más rápido que la luz, mientras los cuerpos permanecen en reposo en relación con él.

A esta extraordinaria velocidad de expansión inicial se le atribuye la uniformidad del universo visible, las partes que lo constituían estaban tan cerca unas de otras, que tenían una densidad y temperatura comunes.

Alan H Guth del Instituto Tecnológico de Massachusetts (M.I.T.) sugirió en 1981 que el universo caliente, en un estadio intermedio, podría expandirse exponencialmente. La idea de Guth postulaba que este proceso de inflación se desarrollaba mientras el universo primordial se encontraba en el estado de súper enfriamiento inestable. Este estado súper enfriado es común en las transiciones de fase; por ejemplo en condiciones adecuadas el agua se mantiene líquida por debajo de cero grados. Por supuesto, el agua súper enfriada termina congelándose; este suceso ocurre al final del período inflacionario.

En 1982 el cosmólogo ruso Andreu Linde introdujo lo que se llamó "nueva hipótesis del universo inflacionario". Linde se dio cuenta de que la inflación es algo que surge de forma natural en muchas teorías de partículas elementales, incluidos los modelos más simples de los campos escalares. Si la mayoría de los físicos han asumido que el universo nació de una sola vez; que en un comienzo éste era muy caliente, y que el campo escalar en el principio contaba con una energía potencial mínima, entonces la inflación aparece como natural y necesaria, lejos de un fenómeno exótico apelado por los teóricos para salir de sus problemas. Se trata de una variante que no requiere de efectos gravitatorios cuánticos, de transiciones de fase, de un súper enfriamiento o también de un súper calentamiento inicial.

El descubrimiento de la expansión del Universo empieza en 1912, con los trabajos del astrónomo norteamericano Vesto M. Slipher. Mientras estudiaba los espectros de las galaxias observó que, excepto en las más próximas, las líneas del espectro se desplazan hacia el rojo.

Esto significa que la mayoría de las galaxias se alejan de la Vía Láctea ya que, corrigiendo este efecto en los espectros de las galaxias, se demuestra que las estrellas que las integran están compuestas de elementos químicos conocidos. Este desplazamiento al rojo se debe al efecto Doppler.

Si medimos el corrimiento del espectro de una estrella, podemos saber si se acerca o se aleja de nosotros. En la mayoría este desplazamiento es hacia el rojo, lo que indica que el foco de la radiación se aleja. Esto es interpretado como una confirmación de la expansión del Universo.

En principio parece que las galaxias se alejan de la Vía Láctea en todas direcciones, dando la sensación de que nuestra galaxia es el centro del Universo. Este efecto es consecuencia de la forma en que se expande el Universo. Es como si la Vía Láctea y el resto de galaxias fuesen puntos situados sobre la superficie de un globo. Al inflar el globo, todos los puntos se alejan de nosotros. Si cambiásemos nuestra posición a cualquiera de los otros puntos y realizásemos la misma operación, observaríamos exactamente lo mismo.

La Ley de Hubble

El astrónomo estadounidense Edwin Powell Hubble relacionó, en 1929, el desplazamiento hacia el rojo observado en los espectros de las galaxias con la expansión del Universo. Sugirió que este desplazamiento hacia el rojo, llamado desplazamiento hacia el rojo cosmológico, es provocado por el efecto Doppler y, como consecuencia, indica la velocidad de retroceso de las galaxias.

Hubble también observó que la velocidad de recesión de las galaxias era mayor cuanto más lejos se encontraban. Este descubrimiento le llevó a enunciar su ley de la velocidad de recesión de las galaxias, conocida como la "ley de Hubble", la cual establece que la velocidad de una galaxia es proporcional a su distancia.

La constante de Hubble o de proporcionalidad es el cociente entre la distancia de una galaxia a la Tierra y la velocidad con que se aleja de ella. Se calcula que esa constante está entre los 50 y 100 Km/s por mega parsec.

En el Universo hay materiales dispersos, dentro y fuera de las galaxias. Hablamos de la materia interestelar, la luz, la radiación de fondo y la materia oscura.

Materia interestelar

Están formados los gases y partículas de polvo que hay entre las estrellas y las galaxias. La mayor parte no es visible, pero se puede detectar a través de sus efectos gravitatorios y de sus emisiones electromagnéticas.

Está formada, sobre todo, por hidrógeno, pero también hay pequeñas cantidades de helio, nitrógeno, oxígeno, carbono y moléculas simples de agua, alcoholes y amoníaco.

Astro-bio-química

Un átomo de hidrógeno y uno de oxígeno pueden combinarse para formar un grupo OH (hidroxilo), muy activo, capaz de unirse con casi cualquier material. Si se encuentra con un átomo de hidrógeno, forma una molécula de agua.

A partir de la década de 1970 se han localizado moléculas cada vez más complejas, formadas por decenas de átomos.

Algunas podrían, en condiciones favorables, formar materia orgánica, que es la base de los organismos vivos.

Materia oscura

Se cree que la materia oscura es un material que no emite ninguna radiación electromagnética. Su existencia se basa en consideraciones teóricas y es, por ahora, uno de los principales problemas que tiene planteados la astrofísica.

Estudiando las fuerzas en el Universo, se calcula que la materia total es mucha más que la detectada por nuestros instrumentos. Como no sabemos nada de ella, la llamamos materia oscura.

...

Descargar como  txt (13.3 Kb)  
Leer 9 páginas más »
txt