ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El concepto de límite de fatiga de los materiales cristalinos

bennyvTutorial5 de Junio de 2013

948 Palabras (4 Páginas)648 Visitas

Página 1 de 4

Estas curvas se obtienen a través de una serie de ensayos donde una probeta del material se somete a tensiones cíclicas con una amplitud máxima relativamente grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes máximas decrecientes.

Los resultados se representan en un diagrama de tensión, S, frente al logaritmo del número N de ciclos hasta la rotura para cada una de las probetas. Los valores de S se toman normalmente como amplitudes de la tensión .

Se pueden obtener dos tipos de curvas S-N. A mayor tensión, menor número de ciclos hasta rotura. En algunas aleaciones férreas y en aleaciones de titanio, la curva S-N se hace horizontal para valores grandes de N, es decir, existe una tensión límite, denominada límite de fatiga, por debajo del cual la rotura por fatiga no ocurrirá.

Curva S-N de un Aluminio frágil, se puede observar cómo la curva decrece y tiende a decrecer hasta llegar a rotura.

Suele decirse, de manera muy superficial, que muchas de las aleaciones no férreas (aluminio, cobre, magnesio, etc.) no tienen un límite de fatiga, dado que la curva S-N continúa decreciendo al aumentar N. Según esto, la rotura por fatiga ocurrirá independientemente de la magnitud de la tensión máxima aplicada, y por tanto, para estos materiales, la respuesta a fatiga se especificaría mediante la resistencia a la fatiga que se define como el nivel de tensión que produce la rotura después de un determinado número de ciclos. Sin embargo, esto no es exacto: es ingenuo creer que un material se romperá al cabo de tantos ciclos, no importa cúan ridículamente pequeña sea la tensión presente.

En rigor, todo material cristalino (metales,...) presenta un límite de fatiga. Ocurre que para materiales como la mayoría de los férricos, dicho límite suele situarse en el entorno del millón de ciclos (para ensayos de probeta rotatoria), para tensiones internas que rondan 0,7-0,45 veces el límite elástico del material; mientras que para aquellos que se dicen sin límite de fatiga, como el aluminio, se da incluso para tensiones muy bajas (en el alumnio, de 0,1-0,2 veces dicho límite), y aparece a ciclos muy elevados (en el aluminio puede alcanzar los mil millones de ciclos; en el titanio pueden ser, según aleaciones, cien millones de ciclos o incluso, excepcionalmente el billón de ciclos). Como en general no se diseñan máquinas ni elementos de manera que las máximas tensiones sean de 0,1-0,2 veces el límite elástico del material, pues en ese caso se estarían desaprovechando buena parte de las capacidades mecánicas del material, y como tampoco se suele diseñar asumiendo valores de vida por encima del millón de ciclos, en la práctica este tipo de materiales no van a poder presentar su límite de fatiga, aunque sí lo tienen.

Esta confusión surge de la propia naturaleza de las curvas S-N de Wöhler, que fueron concebidas en el siglo XIX para los aceros. Al ampliarse el tipo de materiales metálicos usuales en ingeniería, los mismos conceptos y las mismas curvas se trasladaron a otros metales cuyo comportamiento a fatiga es esencialmente diferente (de hecho, es una característica propia de la fatiga la gran variabilidad de comportamientos que presenta en los distintos tipos de materiales). Y como quiera que el acero ha sido y es la piedra angular de la ingeniería, interesaba comparar las propiedades de los demás metales con respecto al mismo: es y era común que, al ensayar materiales, los ensayos se suspendieran una vez superado el millón de ciclos, considerando que no interesaba caracterizar materiales por encima de ese límite temporal.

Resistencia a la fatiga para diversos materiales.

Otro parámetro importante que caracteriza el comportamiento a fatiga de un material es la vida a fatiga Nf.

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com