ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FOTOSINTESIS

marucedillogomez4 de Diciembre de 2011

3.358 Palabras (14 Páginas)595 Visitas

Página 1 de 14

LA FOTOSINTESIS

Todos los animales y muchos microorganismos viven de la incorporación de grandes cantidades de componentes orgánicos desde su entorno. Estos componentes proveen la totalidad de los esqueletos de carbono para la biosíntesis y obtención de energía metabólica, que es necesaria para efectuar todos los procesos celulares.

Se cree que los primeros organismos, en la tierra primitiva, tuvieron acceso al carbono proveniente de los procesos geofísicos que acaecían en ese entonces. Con la evolución, y como consecuencia del agotamiento de la fuente primitiva de carbono, fueron surgiendo organismos capaces de utilizar el CO2 atmosférico para la producción de materia orgánica, constituyéndose como la base de la gran mayoría de las cadenas tróficas existentes en la biósfera

El proceso biológico por el cual se sintetizan moléculas orgánicas a partir de CO2, H2O y Energía lumínica se denomina en general Fotosíntesis. Se resume en la siguiente ecuación:

nCO2 + nH2O + Luz ------------> (CH2O)n + nO2

Los primeros organismos capaces de efectuar fotosíntesis habrían sido algunas formas de bacterias, que probablemente habrían dado origen por medio de endosimbiosis a los cloroplastos, organelos responsables de la fotosíntesis en células vegetales.

A continuación se describirán con cierto detalle los procesos involucrados en la fotosíntesis, partiendo por las propiedades básicas de la luz, hasta entrar de lleno en la fijación del carbono.

Propiedades de la Luz

La luz blanca se separa en diferentes colores (longitudes de ondas) al pasar a través de un prisma. La longitud de onda se define como la distancia entre dos crestas o dos valles de una onda. La energía es inversamente proporcional a la longitud de onda; las longitudes de onda largas tienen menos energía que las de longitudes de onda cortas. La energía de un fotón se puede calcular con la ecuación:

E= hC / l

Donde h es la constante de Planck con valor de 6,6262 x 1034 J.S, C la velocidad de la luz 3,0 x 108 m .S-1 y l lla longitud de onda en metros (m). La energía del fotón es inversamente proporcional a la longitud de onda. El ordenamiento de los colores del espectro luminoso, está determinado por las longitudes de onda de la luz. La luz visible es una pequeña parte del espectro electromagnético comprendida entre 390 nm y 770 nm (nanómetros).

Definición y características de varias regiones de longitud de onda de la luz.

Color Rango de longitud de onda (nm) Longitud de onda representativa Frecuencia (Ciclos/S)

o hertz (Hz) Energía

(KJ/mol)

Ultravioleta <400 254 11.8 x 1014 471

Violeta 400-425 410 7.31 x 1014 292

Azul 425-490 460 6.52 x 1014 260

Verde 490-560 520 5.77 x 1014 230

Amarillo 560-585 570 5.26 x 1014 210

Anaranjado 585-640 620 4.84 x 1014 193

Rojo 640-740 680 4.41 x 1014 176

Infrarrojo >740 1400 2.14 x 1014 85

Mientras la longitud de onda de la luz visible sea más larga, más rojo es el color y sí la longitud de onda es más corta ésta, estará más cerca del lado violeta del espectro. Las longitudes de onda mayores que las rojas, se conocen como infrarojas y las más cortas que las violetas son ultravioletas

La luz se comporta como una onda y como una partícula. Las propiedades de onda de la luz incluyen la curvatura de la onda cuando pasa de un medio a otro (Ej. A través de un prisma, el arco iris, un lápiz introducido en un vaso de agua, etc.). Las propiedades de partícula se demuestran mediante el efecto fotoeléctrico. Por ejemplo cuando un átomo de Zn se expone a la luz ultravioleta, se carga positivamente (Zn+), debido a que la energía luminosa expulsa electrones del Zinc. Estos electrones pueden crear una corriente eléctrica. Los elementos sodio, potasio y selenio tienen una longitud de onda crítica, es la longitud de onda máxima (visible o invisible) que produce un efecto fotoeléctrico. En 1905, Albert Einstein desarrolló una teoría en la que se propuso que la luz estaba compuesta de partículas llamadas fotones, cuya energía es inversamente proporcional a la longitud de onda de la luz. La luz tiene propiedades que se pueden explicar tanto por el modelo de onda como por el de partícula.

Clorofila y Pigmentos Accesorios

Un pigmento es cualquier sustancia que absorbe luz. El color de un pigmento es el resultado de la longitud de onda reflejada (no absorbida ). La clorofila, el pigmento verde de todas las células fotosintéticas, absorbe todas las longitudes de onda de la luz visible excepto el verde, el cual es reflejado y percibido por nuestros ojos. Un cuerpo negro absorbe todas las longitudes de onda que recibe. El pigmento blanco o colores claros reflejan todo o casi todas las longitudes de onda. Las sustancias coloreadas tienen su espectro de absorción característico, que es el patrón de absorción de un pigmento dado.

La clorofila es una molécula compleja, formada por cuatro anillos pirrólicos, un átomo de magnesio y una cadena de fitol larga (C20H39OH).

En las plantas y otros organismos fotosintéticos existen diferentes tipos de clorofilas. La clorofila a se encuentra en todos los organismos fotosintéticos (plantas, ciertos protistas, proclorobacterias y cianobacterias). Los pigmentos accesorios absorben energía que la clorofila es incapaz de absorber. Los pigmentos accesorios incluyen clorofila b (en algas y protistas las clorofilas c,d y e), xantofila(amarilla) y caroteno, anaranjado (como el beta caroteno, un precursor de la vitamina A ). La clorofila a absorbe las longitudes de ondas violeta, azul, anaranjado- rojizo, rojo y pocas radiaciones de las longitudes de onda intermedias ( verde-amarillo-anaranjado).

Los pigmentos accesorios actúan como antena, conduciendo la energía que absorben hacia el centro de reacción. Una molécula de clorofila en el centro de reacción puede transferir su excitación como energía útil en reacciones de biosíntesis. Los carotenoides absorben la longitud de onda azul y un poco en el verde, estos pigmentos tienden a ser rojos, amarillos o anaranjados. La clorofila b absorbe en el azul, y en el rojo y anaranjado del espectro ( con longitudes de ondas largas y baja energía ). La parte media del espectro compuesta por longitudes de onda amarilla y verde es reflejada y el ojo humano la percibe como verde. La distribución de los organismos fotosintéticos en el mar se debe a esto. La longitud de onda corta (más energética ) no penetra más allá de 5 métros de profundidad. La habilidad de absorber parte de la energía de longitud de onda larga (menos penetrante ) debe haber sido una ventaja para las algas fotosintéticas primitivas, que eran incapaces de encontrarse todo el tiempo en la zona superior ( fótica) del mar. Las algas verdes y pardas se instalan en la zona litoral superior, en tanto que en la zona profunda predominan las algas rojas.

Podemos decir que, el espectro de acción de la fotosíntesis es la eficiencia relativa en la generación de una respuesta biológica en función de la longitud de onda, de los diferentes colores, como por ejemplo la liberación de oxígeno. Mediante el estudio de los espectros de acción se descubrió, la existencia de dos fotosistemas en organismos que liberan O2 fotosintéticamente. Cuando la clorofila absorbe energía luminosa pueden ocurrir tres cosas: l) que la energía sea atrapada y convertida en energía química como en la fotosíntesis, 2) que se disipe como calor, 3) que sea emitida inmediatamente como una longitud de onda mayor con perdida de energía como fluorescencia. La clorofila es capaz de disparar una reacción química cuando se encuentra asociada a proteínas inmersas o embebidas en la membrana de los tilacoides de los cloroplastos, o en las membranas plegadas que se encuentran en organismos procariotes fotosintéticos, como son las cianobacterias y las proclorobacterias.

Fases de la Fotosíntesis

La fotosíntesis es un proceso que ocurre en dos fases. La primera fase es un proceso que depende de la luz (reacciones luminosas), requiere la energía directa de la luz que genera los transportadores que son utilizados en la segunda fase. La fase independiente de la luz (reacciones de oscuridad), se realiza cuando los productos de las reacciones de luz son utilizados para formar enlaces covalentes carbono-carbono (C-C), de los carbohidratos. Las reacciones oscuras pueden realizarse en la oscuridad, con la condición de que la fuente de energía (ATP) y el poder reductor (NADPH) formados en la luz se encuentren presentes. Investigaciones recientes sugieren que varias enzimas del ciclo de Calvin, son activadas por la luz mediante la formación de grupos -SH ; de tal forma que el termino reacción de oscuridad no es del todo correcto. Las reacciones de oscuridad se efectúan en el estroma; mientras que las de luz ocurren en los tilacoides.

REACCIONES DE LUZ

En los procesos que dependen de la luz (reacciones de luz), cuando un fotón es capturado por un pigmento fotosintético, se produce la excitación de un electrón, el cual es elevado desde su estado basal respecto al núcleo a niveles de energía superior, pasando a un estado excitado. Después de una serie de reacciones de oxido-reducción, la energía del electrón se convierte en ATP y NADPH. En el proceso ocurre la fotólisis del agua, la que se descompone según la ecuación:

H2O + cloroplasto + fotón à 0,5 O2 + 2 H+ + 2e-

En la reducción de un mol de CO2 se utilizan

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com