ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Formación y composición del suelo

kamilitoprozTesis29 de Octubre de 2013

4.222 Palabras (17 Páginas)745 Visitas

Página 1 de 17

1° SUELO

• El suelo puede formarse y evolucionar a partir de la mayor parte de los materiales rocosos, siempre que permanezcan en una determinada posición el tiempo suficiente para permitir las anteriores etapas. Se pueden diferenciar:

• Suelos autóctonos, formados a partir de la alteración de la roca que tienen debajo.

• Suelos alóctonos, formados con materiales provenientes de lugares separados. Son principalmente suelos de fondos de valle cuya matriz mineral procede de la erosión de las laderas.

La formación del suelo es un proceso en el que las rocas se dividen en partículas menores mezclándose con materia orgánica en descomposición. El lecho rocoso empieza a deshacerse por los ciclos de hielo-deshielo, por la lluvia y por otras fuerzas del entorno:

1. El lecho de roca madre se descompone cada vez en partículas menores.

2. Los organismos de la zona contribuyen a la formación del suelo desintegrándolo cuando viven en él y añadiendo materia orgánica tras su muerte. Al desarrollarse el suelo, se forman capas llamadas horizontes.

3. El horizonte A, más próximo a la superficie, suele ser más rico en materia orgánica, mientras que el horizonte C contiene más minerales y sigue pareciéndose a la roca madre. Con el tiempo, el suelo puede llegar a sustentar una cobertura gruesa de vegetación reciclando sus recursos de forma efectiva

4. Cuando el suelo es maduro suele contener un horizonte B, donde se almacenan los minerales lixiviados

Elementos que integran el suelo:

1. El nitrógeno en el suelo.

El nitrógeno es un elemento fundamental en la materia vegetal, ya que es un constituyente básico de las proteínas, ácidos nucleicos, clorofilas, etc. Las plantas lo absorben principalmente por las raíces en forma de NH4+ y de NO3-. El nitrógeno permite el desarrollo de la actividad vegetativa de la planta, causando el alargamiento de troncos y brotes y aumenta la producción de follaje y frutos. Sin embargo, un exceso de nitrógeno debilita la estructura de la planta creando un desequilibrio entre las partes verdes y las partes leñosas, siendo la planta más sensible al ataque de plagas y enfermedades.

Más del 95% del nitrógeno del suelo está en forma de materia orgánica, cuya fracción menos susceptible de sufrir una descomposición rápida es el humus. El nitrógeno inorgánico está fundamentalmente como NH4+, del cual sólo una pequeña parte está en la solución del suelo y en las sedes de intercambio, pues nitrifica rápidamente, el restante está en forma difícilmente cambiable formando parte de los silicatos.

La cantidad de nitrógeno disponible para las plantas depende del equilibrio entre mineralización (conversión del nitrógeno orgánico en nitrógeno mineral, ya sea por aminización, amonificación o nitrificación) e inmovilización (proceso contrario). Esta mineralización depende, entre otros factores, de la temperatura del suelo, siendo muy activa con temperaturas altas.

2. El fósforo en el suelo.

El fósforo forma parte en la composición de ácidos nucleicos, así como las sustancias de reserva en semillas y bulbos. Contribuye a la formación de yemas, raíces y a la floración así como a la lignificación. Una falta de fósforo provoca un ahogo de la planta, crecimiento lento, una reducción de la producción, frutos más pequeños y una menor expansión de las raíces. La mayor parte del fósforo presente en el suelo no es asequible a las plantas y su emisión en la solución de suelo es muy lenta.

3. El potasio en el suelo.

Siempre se encuentra en forma inorgánica, y en parte en equilibrio reversible entre la fase en solución y la fácilmente cambiable, dependiendo de la temperatura.

Las plantas difieren en su capacidad de utilizar las distintas formas de potasio, según la capacidad de intercambio catiónico de la raíz. Las plantas leguminosas poseen el doble de capacidad de cambio que las gramíneas.

El potasio actúa como un cofactor en reacciones enzimáticas, metabolismo y translocación del almidón, absorción del ión NO3-, apertura de los estomas y síntesis de proteínas. Las carencias de potasio se pueden corregir aportando materia orgánica (compost), sales minerales ricas en potasio, etc.

Principales elementos que lo conforman:

Carbono= C; Hidrógeno= H; Oxigeno= O; Nitrógeno= N; Fósforo= P; Calcio= Ca; Magnesio= Mg; Azufre= S; Potasio= K; Cloro= Cl; Hierro= Fe; Manganeso= Mn; Cobre= Cu; Zinc= Zn; Molibdeno= Mo; Boro= B

Características del suelo:

-Los suelos se diferencian por sus propiedades físicas, químicas y

biológicas.

Propiedades físicas

-textura: determinada por la proporción de partículas minerales de diverso

tamaño presentes en el suelo.

-Estructura: es la forma en que las partículas se juntan para formar

agregados.

-Densidad: se refiere a la cantidad de masa por unidad de volumen del

suelo.

-Temperatura: esta influye en la distribución de la vegetación.

-Color: esto depende de sus componentes y varia con la cantidad de

humedad

CLASES DE SUELO

.

2° CICLOS

CICLOS DEL CARBONO

El carbono permanentemente ingresa en la atmósfera en forma de dióxido de carbono, metano y otros gases. Al mismo tiempo, se elimina mediante las plantas, los océanos y de otras maneras. De esto se trata el ciclo del carbono. El equilibrio del ciclo es esencial para determinar el clima terrestre.

El carbono es un componente esencial de nuestro cuerpo, los alimentos que comemos, la ropa que usamos, la mayor parte del combustible que consumimos y muchos otros materiales que utilizamos. Más del 90% de los compuestos químicos conocidos contienen carbono. Esto no nos sorprende, ya que el carbono se combina muy fácilmente con otros elementos y consigo mismo. Los átomos de carbono se intercambian permanentemente entre los organismos vivos y muertos, la atmósfera, los océanos, las rocas y el suelo. Cada vez que exhalamos aire, liberamos CO2 de nuestros pulmones a la atmósfera, que contiene átomos de carbono de las plantas y los animales que comemos. Los átomos de carbono que hoy están en nuestro cuerpo anteriormente podrían haber estado en distintas plantas y animales, quizás hasta en dinosaurios y otras criaturas que se extinguieron.

La distribución de carbono entre la atmósfera, los organismos, la tierra y los océanos ha cambiado con el transcurso del tiempo. Hace aproximadamente 550 millones de años la concentración de CO2 en la atmósfera era de 7.000 partes por millón, más de 18 veces lo que es hoy. ¿Adónde fue todo ese carbono atmosférico? La mayoría terminó en forma de rocas sedimentarias como la piedra caliza. Cómo ocurrió eso es parte de la extensa historia del ciclo del carbono .El ciclo del carbono es una combinación de muchos procesos biológicos, químico y físicos que hacen que el carbono se traslade.

CICLOS DEL NITROGENO

Los organismos emplean el nitrógeno en la síntesis de proteínas, ácidos nucleicos (ADN y ARN) y otras moléculas fundamentales del metabolismo.

Su reserva fundamental es la atmósfera, en donde se encuentra en forma de N2, pero esta molécula no puede ser utilizada directamente por la mayoría de los seres vivos (exceptuando algunas bacterias).

Esas bacterias y algas cianofíceas que pueden usar el N2 del aire juegan un papel muy importante en el ciclo de este elemento al hacer la fijación del nitrógeno. De esta forma convierten el N2 en otras formas químicas (nitratos y amonio) asimilables por las plantas.

El amonio (NH4+) y el nitrato (NO3-) lo pueden tomar las plantas por las raíces y usarlo en su metabolismo. Usan esos átomos de N para la síntesis de las proteínas y ácidos nucleicos. Los animales obtienen su nitrógeno al comer a las plantas o a otros animales.

En el metabolismo de los compuestos nitrogenados en los animales acaba formándose ión amonio que es muy tóxico y debe ser eliminado. Esta eliminación se hace en forma de amoniaco (algunos peces y organismos acuáticos), o en forma de urea (el hombre y otros mamíferos) o en forma de ácido úrico (aves y otros animales de zonas secas). Estos compuestos van a la tierra o al agua de donde pueden tomarlos de nuevo las plantas o ser usados por algunas bacterias.

Algunas bacterias convierten amoniaco en nitrito y otras transforman este en nitrato. Una de estas bacterias (Rhizobium) se aloja en nódulos de las raíces de las leguminosas (alfalfa, alubia, etc.) y por eso esta clase de plantas son tan interesantes para hacer un abonado natural de los suelos.

Donde existe un exceso de materia orgánica en el mantillo, en condiciones anaerobias, hay otras bacterias que producen desnitrificación, convirtiendo los compuestos de N en N2, lo que hace que se pierda de nuevo nitrógeno del ecosistema a la atmósfera.

A pesar de este ciclo, el N suele ser uno de los elementos que escasean y que es factor limitante de la productividad de muchos ecosistemas. Tradicionalmente se han abonado los suelos con nitratos para mejorar los rendimientos agrícolas. Durante muchos años se usaron productos naturales ricos en nitrógeno como el guano o el nitrato de Chile. Desde que se consiguió la síntesis artificial de amoniaco por el proceso Haber fue posible fabricar abonos nitrogenados que se emplean actualmente en grandes cantidades en la agricultura. Como veremos su mal uso produce, a veces, problemas de contaminación en las aguas: la eutrofización

CICLO DEL

...

Descargar como (para miembros actualizados) txt (27 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com