ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Leyes De Faraday

arleyk972 de Septiembre de 2013

4.222 Palabras (17 Páginas)355 Visitas

Página 1 de 17

1. Leyes de Faraday

Reacciones de Óxido-Reducción

Una reacción de oxidación—reducción o redox es aquella en la que se transfieren electrones de un reactivo a otro. Como su nombre lo indica, estas reacciones involucran dos procesos: oxidación y reducción. Este tipo de reacciones constituyen una importante fuente de energía en el planeta. Por ejemplo, la combustión de la gasolina en el interior del motor de un automóvil o la digestión y la asimilación de los alimentos en nuestro organismo son procesos en los que ocurre transferencia de electrones, como resultado del cual se produce o se almacena energía. Para comprender el significado de estos conceptos, analicemos el siguiente ejemplo.

Cuando se introduce una placa de zinc metálico en una solución concentrada de sulfato cúprico (CuSO4), se observa que, al cabo de algún tiempo, la placa de zinc queda recubierta de una capa de cobre metálico. La ecuación química que describe el proceso es:

Electrólisis

La electrólisis es uno de los procesos electroquímicos más importantes, en el cual el flujo de una corriente eléctrica a través de una porción de materia, genera cambios químicos es ésta. Dichos cambios o reacciones químicas no se producen en ausencia de una fuente de energía eléctrica y todo el proceso sucede en un dispositivo denominado celda electrolítica.

Una celda electrolítica es un dispositivo similar al empleado para determinar si una solución es o no electrolítica. Consta de un recipiente que contiene una solución de algún electrolítico y dos(2) electrodos que se sumergen en dicha sustancia, a través de los cuales fluye una corriente eléctrica, proveniente de una fuente de energía (por ejemplo una pila). El electrodo desde el cual salen electrones hacia la solución está

cargado negativamente (cátodo), por lo que los iones cargados positivamente (cationes) migrarán hacia éste. De la misma forma, los iones negativos (aniones) se verán atraídos por el electrodo positivo o ánodo. Dado que el electrodo negativo presenta un exceso de electrones, se comporta como un agente reductor, pues puede ceder dichos electrones a un ion positivo que carezca de ellos. Igualmente, el polo positivo de una celda electrolítica actúa como agente oxidante, capturando los electrones de exceso que posean los iones negativos.

Así, podemos afirmar que en una celda electroquímica, el electrodo donde ocurre la reducción es el cátodo y áquel en donde ocurre la oxidación corresponde al ánodo.

Aplicaciones de la Electrólisis

• Electrólisis del cloruro de sodio

Tres compuestos químicos de gran importancia, el NaOH, el Cl2 y el H2 se obtienen a partir de la electrólisis de una solución acuosa concentrada de NaCl, conocida como salmuera. El hidrógeno se produce en el cátodo mediante la reacción:

La reacción total se resume de la siguiente manera:

Tanto el hidrógeno como el cloro producidos se secan, purifican y comprimen para ser almacenados en cilindros y posteriormente ser utilizados.

El sistema se alimenta continuamente bombeando salmuera fresca a la celda electrolítica, que contiene una mezcla de NaOH (cerca de 10%) y una buena cantidad de NaCl. El siguiente paso es extraer el agua por evaporación para que el NaCl cristilice y la concentración NaOH en la solución en la solución aumente (hasta un 50%), luego de lo cual es posible extraer este producto.

• nación electrolítica de los metales.

A través de un proceso conocido como electrorrefinación se consiguen metales de alta pureza, pueden ser utilizados para diversos fines.

Por ejemplo, el cobre es extraído de los yacimientos naturales en la forma de óxidos o sulfuros de cobre (CuO, Cu2O, Cu2SRefi, CuS y CuFeS2). Por medio de molienda, fundición y otros procesos se consigue cobre metálico con una pureza cercana al 99%. El cobre es un importante conductor de la electricidad y esta propiedad se ve afectada considerablemente por pequeñas concentraciones de otros metales, como oro y plata que constituyen impurezas. Por esta razón, el cobre metálico debe ser electrorrefinado, luego de lo cual se consigue una pureza cercana al 99,98%, ideal para la fabricación de alambres, bobinas o motores eléctricos.

La celda se utiliza como cátodo una lámina delgada de cobre de alta pureza y como ánodo una pieza del metal con Impurezas.

Estos iones permanecen en solución, contrario a otras impurezas como la plata, oro y platino, que al oxidarse con menos facilidad que el Cu, precipitan, acumulándose en forma metálica en el fondo de la celda. Este precipitado es luego recuperado y dado su gran valor, el proceso general de purificación de un metal como el cobre es económicamente rentable.

Por este procedimiento se obtienen, además del cobre, metales como el aluminio y el magnesio.

• Galvanoplastia

La galvanoplastia es una técnica que consiste en recubrir una pieza de metal o de otro material, con una capa delgada de otro metal. El proceso general consiste en tomar el objeto que se va a recubrir como cátodo y como ánodo un trozo del metal con el cual se va a revestir la pieza. La solución electrolítica se compone de una sal del mismo metal del ánodo. Los iones positivos del metal, provenientes, ya sea de la solución o de la oxidación en ánodo se depositan sobre el cátodo por reducción, recubriendo la pieza.

Muchos objetos metálicos como tornillos, pulseras, relojes, muebles y piezas para equipo de sonido, son galvanizados con capas de metales como cromo, plata u oro. Este revestimiento mejora algunas de las propiedades físicas de estos objetos, como su resistencia a la corrosión, la conductividad eléctrica o su apariencia..

Tal vez la aplicación más importante de la galvanoplastia se encuentra en el recubrimiento de piezas de hierro o de acero con capas de zinc o cromo respectivamente, con el fin de hacerlas más resistente a la corrosión.

Celdas Electroquímicas

• Generalidades

Las reacciones de óxido---reducción que ocurren espontáneamente, pueden ser utilizadas para generar energía eléctrica. Para ello es necesario que la transferencia de electrones no se realice directamente, es decir, que la oxidación y la reducción sucedan en espacios separados. De esta manera, el flujo de electrones desde el agente reductor hacia el agente oxidante, se traduce en una corriente eléctrica, que se denomina corriente galvánica, en honor a Luigi Galvani (1737-1798), físico italiano que estudió estos fenómenos. Las celdas electroquímicas, conocidas también como celdas galvánicas o voltaicas, son los dispositivos en los cuales se realiza este proceso. En una celda electroquímica los reactivos se mantienen en compartimentos separados o semiceldas, en las cuales se realizan las semi---reacciones de oxidación y reducción separadamente. Una semicelda consta de una barra de metal que funciona como electrodo y que se sumerge en una solución acuosa compuesta por iones del mismo metal, provenientes de una sal de éste. Los electrodos de cada semicelda, se comunican a través de un circuito eléctrico externo, por el que viajan los electrones desde el agente reductor hasta el agente oxidante. Estos dispositivos son el fundamento de las pilas y baterías que usamos a diario.

A manera de ejemplo, analicemos una celda electroquímica

Para la reacción entre sulfato de cobre y el zinc, mencionada posteriormente, conocida como pila de Daniell. En esta, una de las semiceldas contiene sulfato de zinc (ZnSO4), la otra contiene sulfato de cobre (CuSO4) y ambas se encuentran conectadas a través de un circuito conductor de la electricidad, cuyos electrodos son, respectivamente, una barra de zinc y una barra de cobre. Los electrones producidos durante la oxidación del Zn viajan a través del circuito, desde el Cu2+ . Adicionalmente, las celdas electroquímicas presentan un tubo de vidrio lleno de una solución salina, conductora de la electricidad, que comunica las dos semiceldas y que se conoce como puente salino. En este caso el puente salino contiene iones , pasan de un lado a otro con el fin de equilibrar las cargas en las semiceldas, debido al desequilibrio generado por el flujo de electrones desde el polo reductor. El electrodo de Zn presenta una deficiencia de electrones, por lo que actúa como ánodo, mientras que el electrodo Cu, que recibe el flujo de electrones actúa como cátodo.

• Potenciales de oxidación---reducción

El potencial de reducción de una sustancia puede definirse como la tendencia de los átomos de ésta para aceptar electrones, es decir, se refiere a qué tan fácilmente se reducen estos átomos. El potencial de reducción implica la existencia de dos polos o electrodos, por lo que no es posible medir el potencial de un electrodo aislado. Por esta razón el potencial de una sustancia cualquiera se especifica en relación con otra sustancia, tomada como patrón. Por convención, el hidrógeno se toma como patrón y se le asigna arbitrariamente un potencial de reducción igual a cero, referido para una presión de una atmósfera, una temperatura de 25ºC y una concentración de protones ( ) 1 M. Bajo estas condiciones se puede medir el potencial de una sustancia cualquiera por medio de una celda en la cual una de las semiceldas contiene contiene un electrodo de hidrógeno (denominado electrodo normal de hidrógeno, ENH) y la otra, la sustancia por evaluar.

La unidad internacional para expresar el potencial eléctrico es el voltio (V). por ejemplo, para el sistema de la figura que se muestra, de Zn y H, el voltímetro muestra que hay una diferencia de potencial de 0,76 V. este valor corresponde

...

Descargar como (para miembros actualizados) txt (26 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com