ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Leyes De La Termodinamica

alvarez577030 de Mayo de 2013

6.826 Palabras (28 Páginas)356 Visitas

Página 1 de 28

Leyes de la termodinámica

Principio cero de la termodinámica

Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.

En palabras llanas: «Si pones en contacto un objeto frío con otro caliente, ambos evolucionan hasta que sus temperaturas se igualan».

Tiene una gran importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez esta dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.

Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.

Primera ley de la termodinámica

También conocida como principio de conservación de la energía para la termodinámica , establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará.

En palabras llanas: "La energía ni se crea ni se destruye: sólo se transforma".

Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta porNicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.

La ecuación general de la conservación de la energía es la siguiente:

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:

Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.

Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional

Segunda ley de la termodinámica

Esta ley marca la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius

En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».

Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente (E.absorbida), y lo convierta íntegramente en trabajo (E.útil).

Enunciado de Kelvin—Planck

Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, y la realización de una cantidad igual de trabajo.

Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y ésta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

Tercera ley de la termodinámica

La tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la termodinámica clásica, así que es probablemente inapropiado tratarlo de «ley».

Es importante remarcar que los principios o leyes de la termodinámica son válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel microscópico. La idea del demonio de Maxwell ayuda a comprender los límites de la segunda ley de la termodinámica jugando con las propiedades microscópicas de las partículas que componen un gas.

La Naturaleza Entropica Del Proceso Economico.

la definición de los sistemas económicos como abiertos para, defender la naturaleza entrópica del proceso económico. La segunda ley de la termodinámica dice que los sistemas aislados tienden al desorden, ya que en ellos la entropía nunca puede disminuir y como mucho permanecerá constante. Por consiguiente la evolución espontánea de un sistema aislado se traduce en un incremento de la entropía.

El punto de vista entrópica supone que los procesos económicos producen consecuencias irreversibles debido a sus múltiples interacciones con la naturaleza. Explotamos yacimientos de recursos naturales no renovables y deterioramos o modificamos la calidad de otros recursos, imponiéndoles un ritmo de explotación superior a su capacidad de regeneración, agravando el deterioro de la biósfera, lo que incluye cambios climáticos irreversibles.

La economía energética

es una subclase de la economía que se centra en sus relaciones con la energía como base de todas las demás relaciones. Es una subclase de la economía ecológica en cuanto asume que la cadena alimentaria en la ecologíatiene una analogía directa a la cadena de suministro de energía para las actividades humanas.

Algunas teorías van mucho más lejos asumiendo que estas relaciones son decisivas, tanto como la economía marxista asume que las relaciones de la propiedad son decisivas, en la determinación de las acciones humanas a gran escala.

La economía energética fue considerada por algunos una rama de los movimientos de la ecología profunda —compartiendo la opinión de que la humanidad puede sufrir su desaparición cuando las fuentes de energía se agoten. Y consideran que esto no tiene alternativa. En consecuencia, el principio fundamental de la economía energética es la conservación de la energía.

Diferencia entre la economía ecológica, ambiental y neoclásica.

La economía ambiental y la de los recursos naturales son subdisciplinas de la economía neoclásica centradas en la asignación óptima de los recursos y la contaminación. Pero, según la EE, ignoran cuestiones como el funcionamiento de los ecosistemas, el tamaño de la economía y la distribución de los beneficios y cargas ambientales en la sociedad.

La primera, se refiere a la forma en que los residuos son dispuestos y la calidad resultante de la atmosfera, la hidrosfera, la biosfera y la pedosfera como receptores de residuos. Además, la economía ambiental (EA) se relaciona con la contaminacion ambiental y conservación de los ecosistemas y la biodiversidad.

La economía de recursos naturales (ERN), por otra parte, se define como el estudio de la forma en que la sociedad asigna recursos naturales escasos, en términos monetarios respecto a fines medidos también en dinero (precios), tales como reservas pesqueras,

...

Descargar como (para miembros actualizados) txt (44 Kb)
Leer 27 páginas más »
Disponible sólo en Clubensayos.com