ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Potencial De La Menbrana


Enviado por   •  13 de Diciembre de 2014  •  5.672 Palabras (23 Páginas)  •  258 Visitas

Página 1 de 23

Potenciales de membrana

y potenciales de acción

Hay potenciales eléctricos a través de las membranas de prácticamente todas las células del cuerpo. Además, algunas células, como las células nerviosas y musculares, son capaces de generar impulsos electroquímicos rápidamente cambiantes en sus membranas, y estos impulsos se utilizan para transmitir señales a través de las membranas de los nervios y de los músculos. En otros tipos de células, como las células glandulares, los macrófagos y las células ciliadas, los cambios locales de los potenciales de membrana también activan muchas de las funciones de las células. Este análisis se refiere a los potenciales de membrana que se generan tanto en reposo como durante la acción en las células nerviosas y musculares.

Física básica de los potenciales de membrana

Potenciales de membrana provocados por difusión

«Potencial de difusión» producido por una diferencia de concentración iónica a los dos lados de la membrana. En la figura 5-1A la concentración de potasio es grande dentro de la membrana de una fibra nerviosa, pero muy baja fuera de la misma. Consideremos que en este caso la membrana es permeable a los iones potasio, pero no a ningún otro ion. Debido al gran gradiente de concentración de potasio desde el interior hacia el exterior hay una intensa tendencia a que cantidades adicionales de iones potasio difundan hacia fuera a través de la membrana. A medida que lo hacen transportan cargas eléctricas positivas hacia el exterior, generando de esta manera electropositividad fuera de la membrana y electronegatividad en el interior debido a los aniones negativos que permanecen detrás y que no difunden hacia fuera con el potasio. En un plazo de aproximadamente 1 ms la diferencia de potencial entre el interior y el exterior, denominada potencial de difusión, se hace lo suficientemente grande como para bloquear la difusión adicional neta de potasio hacia el exterior, a pesar del elevado gradiente de concentración iónica de potasio. En la fibra nerviosa normal del mamífero la diferencia de potencial necesaria es de aproximadamente 94 mV, con negatividad en el interior de la membrana de la fibra.

La figura 5-1B muestra el mismo fenómeno que la figura 5-1A, pero esta vez con una concentración elevada de iones sodio fuera de la membrana y una concentración baja de sodio dentro. Estos iones también tienen carga positiva. Esta vez la membrana es muy permeable a los iones sodio, aunque es impermeable a todos los demás iones. La difusión de los iones sodio de carga positiva hacia el interior crea un potencial de membrana de polaridad opuesta al de la figura 5-1A, con negatividad en el exterior y positividad en el interior. Una vez más el potencial de membrana se hace lo suficientemente elevado en un plazo de milisegundos como para bloquear la ulterior difusión neta de iones sodio hacia el interior; sin embargo, esta vez, en la fibra nerviosa del mamífero, el potencial es de aproximadamente 61 mV positivos en el interior de la fibra. Así, en las dos partes de la figura 5-1 vemos que una diferencia de concentración de iones a través de una membrana puede, en condiciones adecuadas, crear un potencial de membrana. Más adelante en este capítulo mostramos que muchos de los rápidos cambios de los potenciales de membrana que se observan durante la transmisión de los impulsos nerviosos y musculares se deben a la aparición de estos potenciales de difusión rápidamente cambiantes.

Figura 5-1 A. Establecimiento de un potencial de «difusión» a través de la membrana de una fibra nerviosa, producido por la difusión de iones potasio desde el interior de la célula hacia el exterior a través de una membrana que es permeable selectivamente sólo al potasio. w Establecimiento de un «potencial de difusión» cuando la membrana de la fibra nerviosa sólo es permeable a los iones sodio. Obsérvese que el potencial de la membrana interna es negativo cuando difunden los iones potasio y positivo cuando difunden los iones sodio debido a los gradientes de concentración opuestos de estos dos iones.

Relación del potencial de difusión con la diferencia

de concentración: potencial de Nernst.

El nivel del potencial de difusión a través de una membrana que se opone exactamente a la difusión neta de un ion particular a través de la membrana se denomina potencial de Nernst para ese ion, La magnitud de este potencial de Nernst viene determinada por el cociente de las concentraciones de ese ion específico en los dos lados de la membrana. Cuanto mayor es este cociente, mayor es la tendencia del ion a difundir en una dirección y, por tanto,mayor será el potencial de Nernst necesario para impedir la difusión neta adicional. Se puede utilizar la siguiente ecuación, denominada ecuación de Nernst, para calcular el potencial de Nernst para cualquier ion univalente a la temperatura

corporal normal (37 °C):

FEM (milivoltios):  61 × log _ C_o__n_c_e_n_t_r_a_c_i_ó_n_ _in_t_e_r_i_o_r_

Concentración exterior

donde FEM es la fuerza electromotriz. Cuando se utiliza esta fórmula habitualmente se asume que el potencial del líquido extracelular que está fuera de la membrana se mantiene a un nivel de potencial cero, y que el potencial de Nernst es el potencial que está en el interior de la membrana. Además, el signo del potencial es positivo (+) si el ion que difunde desde el interior hacia el exterior es un ion negativo, y es negativo (–) si el ion es positivo. Así, cuando la concentración de iones potasio positivos en el interior es 10 veces mayor que la del exterior, el logaritmo de 10 es 1, de modo que se calcula que el potencial de Nernst es de –61 mV en el interior de la membrana. Cálculo del potencial de difusión cuando la membrana es permeable a varios iones diferentes Cuando una membrana es permeable a varios iones diferentes,el potencial de difusión que se genera depende de tres factores:

1) la polaridad de la carga eléctrica de cada uno delos iones;

2) la permeabilidad de la membrana (P) a cada uno de los iones,

3) las concentraciones (C) de los respectivos iones en el interior (i) y en el exterior (e) de la membrana. Así, la fórmula siguiente,

...

Descargar como (para miembros actualizados)  txt (34 Kb)  
Leer 22 páginas más »
Disponible sólo en Clubensayos.com