ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Temperatura De Transicion Vitrea


Enviado por   •  3 de Diciembre de 2013  •  2.337 Palabras (10 Páginas)  •  418 Visitas

Página 1 de 10

Temperatura de transición vítrea

A temperaturas altas, los polímeros se vuelven líquidos muy viscosos en los que las cadenas están constantemente en movimiento cambiando su forma y deslizándose unas sobre las otras. A temperaturas muy bajas, el mismo polímero seria un sólido duro, rígido y frágil.

El polímero puede solidificarse formando un sólido amorfo o uno cristalino. Como se sabe los polímeros con fuertes irregularidades en su estructura tienden a formar sólidos amorfos y los polímeros con cadenas muy simétricas tienden a cristalizar, por lo menos parcialmente.

La línea ABCD   corresponde a un polímero completamente amorfo. A temperaturas altas está en forma de un líquido viscoso, y al enfriarlo, se vuelve cada vez más elástico hasta que llega a la temperatura de transición vítrea , Tg, se convierte en un sólido duro, rígido y frágil. Lo que sucede es que, conforme disminuye la temperatura, el polímero se contrae porque las cadenas se mueven menos y se atraen más. Dado que va disminuyendo el volumen libre, es decir, los espacios entre las moléculas, los segmentos de las cadenas tienen cada vez menos lugar para girar, hasta que al llegar a Tg, dejan de hacerlo, el material se pone rígido y en esas condiciones se vuelve vítreo, es decir frágil, porque como sus cadenas aunque todavía vibran ya no pueden girar para cambiar su posición, y no tienen manera de amortiguar los impactos. A esta restricción del movimiento molecular también contribuye por supuesto, la falta de suficiente energía debida a las bajas temperaturas.

Evidentemente, el estado vítreo lo alcanzan diferentes polímeros a diferentes temperaturas. Los que sean más flexibles, con menos grupos voluminosos o con heteroátomos en sus cadenas, podrán girar o permanecer flexibles a temperaturas menores que los otros. Por ejemplo, los silicones, el polietileno y el hule natural tienen temperaturas de transición vítrea de -123, -120 y -73 °C respectivamente. En cambio, polímeros con grupos grandes o grupos muy polares o polarizables, tienen de por sí tan baja movilidad que son vítreos a temperatura ambiente y para reblandecerlos se requiere de altas temperaturas.

La línea ABEI se refiere al polímero semicristalino. En este caso existen dos transiciones: una, cuando cristaliza el polímero al enfriarlo (Tm) y la otra cuando el material elástico resultante se vuelve vítreo (Tg).

Entre Tm y Tg, los cristalitos están embebidos en una matriz más o menos elástica y el material es correoso, pero abajo de Tg los cristales están dispersos en una matriz frágil.

Las propiedades mecánicas de los polímeros también cambian con la temperatura y en la gráfica del módulo de elasticidad con la temperatura se aprecian las mismas transiciones.

Abajo de Tg, el material es un sólido vítreo de gran rigidez, que se manifiesta por altos módulos que generalmente alcanzan los 106 psi. la única deformación posible se debe al estiramiento y doblamiento de los enlaces covalentes que unen a los átomos en la cadena, y al estiramiento de los enlaces intermoleculares. esta deformación no es permanente ni puede ser muy pronunciada.

A temperaturas superiores a Tg, la deformación es más extensa y más dependiente del tiempo, porque las moléculas ya tienen mayor libertad y cambian continuamente su forma y hasta cierto punto su posición. La aplicación del esfuerza tiende a orientar a las moléculas en favor de configuraciones que tiendan a hacer trabajo. Por ejemplo, un esfuerzo de tensión extiende a las moléculas y las orienta en la dirección del esfuerzo aplicado porque así se produce una elongación de la muestra.

Si la temperatura es mayor, pero muy cercana a Tg, la deformación es prácticamente reversible y se debe al reordenamiento de segmentos cortos de las cadenas.

Entre Tg y Tm, el material es plastico porque las cadenas están enmarañadas y eso dificulta su movimiento.

A temperaturas cercanas a Tm y mayores, las cadenas poliméricas ya se deslizan y separan causando flujo viscoso irreversible. El material se comporta como un líquido muy viscoso.

Un polímero parcialmente cristalino, generalmente tiene mayor resistencia mecánica que el mismo material con estructura amorfa. La mayor resistencia o mayor módulo se debe al gran número y espaciamiento regular de los espacios intermoleculares en las estructuras cristalinas. En los polímeros amorfos, el número de estas interacciones es menos y su espaciamiento es errático, así que al aplicarles esfuerzos, muchas secciones del polímero se extienden o deforman libremente.

Propiedades Mecánicas

Hablamos mucho de polímeros "resistentes" (o "fuertes"), "duros", y hasta "dúctiles". La resistencia, la dureza y la ductilidad son propiedades mecánicas. ¿Pero qué significan en realidad estas palabras? ¿Cómo podemos determinar lo "resistente" que es un polímero? ¿Qué diferencia existe entre un polímero "resistente" y un polímero "duro"?

Resistencia

La resistencia es una propiedad mecánica que usted podría relacionar acertadamente, pero no sabría con exactitud qué es lo que queremos significar con la palabra "resistencia" cuando hablamos de polímeros. En primer lugar, existen varios tipos de resistencia. Está la resistencia ténsil. La resistencia ténsil es importante para un material que va a ser extendido o va a estar bajo tensión. Las fibras necesitan tener buena resistencia ténsil.

Luego está la resistencia a la compresión. El concreto es un ejemplo de material con buena resistencia a la compresión. Cualquier cosa que deba soportar un peso encima, debe poseer buena resistencia a la compresión.

También está la resistencia a la flexión. Existen otras clases de resistencia de las que podríamos hablar. Un polímero tiene resistencia a la torsión si es resistente cuando es puesto bajo torsión. También está la resistencia al impacto. Una muestra tiene resistencia al impacto si es fuerte cuando se la golpea agudamente de repente, como con un martillo.

¿Pero qué significa ser resistente? Tenemos una definición bien precisa. Emplearemos la resistencia ténsil para ilustrarlo. Para medir la resistencia ténsil de una muestra polimérica, tomamos la muestra y tratamos de estirarla tal como se muestra en la figura de arriba. Generalmente la estiramos con una máquina llamada Instron. Esta máquina simplemente sujeta cada extremo de la muestra y luego procede a estirarla. Mientras dura el estiramiento de la muestra, va midiendo la fuerza (F) que está ejerciendo. Cuando conocemos la fuerza que se está

...

Descargar como (para miembros actualizados)  txt (14.7 Kb)  
Leer 9 páginas más »
Disponible sólo en Clubensayos.com