ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Informatica


Enviado por   •  5 de Mayo de 2014  •  2.068 Palabras (9 Páginas)  •  173 Visitas

Página 1 de 9

ENSAYO

LA INFORMATICA

Cuando, en julio del año pasado, Ray Kurzweil se reunió con el director general de Google -Larry Page- no estaba buscando trabajo. Kurzweil es un inventor respetado que se ha convertido en un futurista de la inteligencia de máquinas, y quería hablar de su próximo libro, How to Create a Mind. Le comentó a Page, quien había leído un primer borrador, que quería crear una empresa para desarrollar sus ideas sobre cómo construir un ordenador verdaderamente inteligente: uno que pudiera entender el lenguaje para después hacer inferencias y decisiones por sí mismo.

Kurzweil no solo se sintió atraído por los recursos informáticos de Google, sino también por el sorprendente progreso que la compañía ha hecho en una rama de la IA denominada aprendizaje profundo. El software de aprendizaje profundo intenta imitar la actividad de las distintas capas de neuronas en la corteza cerebral, el arrugado 80 por ciento del cerebro donde se produce el pensamiento. El software aprende, en un sentido muy real, al reconocer patrones en representaciones digitales de sonidos, imágenes y otros datos.

La idea de base, es decir, que el software pueda simular la gran variedad de neuronas del neocórtex en una 'red neuronal' artificial, tiene décadas de antigüedad, y ha dado lugar a tantas decepciones como avances. Sin embargo, debido a las mejoras en las fórmulas matemáticas y al uso de ordenadores cada vez más potentes, los científicos informáticos pueden hoy día modelar muchas más capas de neuronas virtuales que antes.

Extender el aprendizaje profundo a aplicaciones más allá del reconocimiento del habla e imágenes requerirá más avances conceptuales y de software, por no hablar de muchos más avances en potencia de procesamiento. Y es probable que no contemos con máquinas que todos consideremos capaces de poder pensar por sí mismas durante años, quizá décadas, si es que alguna vez logran crearse. Pero por ahora, según Peter Lee, director de Microsoft Research EE.UU., el "aprendizaje profundo ha reavivado algunos de los grandes retos de la inteligencia artificial".

La construcción de un cerebro

Se han dado muchos enfoques opuestos para superar esos desafíos. Uno de ellos ha consistido en aportar a los ordenadores información y reglas sobre el mundo, lo cual ha exigido a los programadores escribir laboriosamente un tipo de software que estuviera familiarizado con los atributos de, por ejemplo, un borde o un sonido. Eso ha llevado muchísimo tiempo y aún así los sistemas no pueden hacer frente a datos ambiguos. Se limitan a aplicaciones de corto alcance y controladas, como por ejemplo sistemas de menú de teléfono que te pidan que hagas consultas diciendo palabras específicas.

Las redes neuronales, desarrolladas en la década de los 50 poco después de los albores de la investigación en IA, parecía prometedora puesto que trataba de simular la forma en que el cerebro funcionaba, aunque de modo muy simplificado. Un programa traza un conjunto de neuronas virtuales y asigna valores numéricos aleatorios, o 'pesos', a las conexiones entre ellas. Estos pesos determinan cómo responde cada neurona simulada, con una salida matemática entre 0 y 1, ante una característica digitalizada, como por ejemplo un borde o un tono de azul en una imagen, o a un nivel de energía en una frecuencia particular de un fonema, la unidad individual de sonido en sílabas habladas.

Los programadores podrían formar una red neuronal para detectar un objeto o un fonema mediante el bombardeo de la red con versiones digitalizadas de imágenes que contengan esos objetos u ondas sonoras que contengan los fonemas. Si la red no reconoce con precisión un patrón particular, un algoritmo ajustaría los pesos.

El objetivo final de este entrenamiento era conseguir que la red reconociera de forma consistente patrones de discurso o conjuntos de imágenes que nosotros los humanos conocemos como, por ejemplo, el fonema 'd' o la imagen de un perro. Esto se parece mucho a la forma en que un niño aprende qué es un perro mediante la observación de los detalles de la forma de la cabeza, el comportamiento y otras características en animales peludos y que ladran, conocidos por las personas como perros.

Sin embargo, las redes neuronales iniciales solo podían simular un número muy limitado de neuronas al mismo tiempo, por lo que no podían reconocer patrones de gran complejidad. Acabaron languideciendo a lo largo de la década de los 70.

A mediados de la década de los 80, Hinton y otros expertos contribuyeron a un renacimiento del interés en las redes neuronales con los llamados modelos 'profundos', que hacían un mejor uso de varias capas de neuronas de software. Sin embargo, la técnica todavía requería una gran cantidad de intervención humana: los programadores tenían que etiquetar los datos antes de dárselos a la red. Y el reconocimiento del habla o imágenes complejas requería más potencia informática de la que entonces estaba disponible.

Finalmente, sin embargo, en la última década Hinton y otros investigadores hicieron algunos avances conceptuales fundamentales. En 2006, Hinton desarrolló una forma más eficiente de entrenar a las capas individuales de neuronas. La primera capa aprende características primitivas, como un borde en una imagen o la unidad más pequeña de sonido del habla.

Un ejemplo son los gatos. En junio pasado, Google hizo una demostración de una de las mayores redes neuronales creadas hasta ahora, con más de mil millones de conexiones. Un equipo dirigido por el profesor de informática de Stanford Andrew Ng y el Miembro de Google Jeff Dean mostró al sistema imágenes de 10 millones de videos de YouTube elegidos al azar.

Una neurona simulada en el modelo de software se centró en las imágenes de gatos. Otras se centraron en rostros humanos, flores amarillas y otros objetos. Y gracias a la potencia del aprendizaje profundo, el sistema identificó estos objetos discretos a pesar de que ningún humano jamás los había definido o etiquetado.

Una gran cantidad de datos

El entrenamiento de las numerosas capas de neuronas virtuales en el experimento requirió 16.000 procesadores, el tipo de infraestructura de computación que Google ha desarrollado para su motor de búsqueda y otros servicios. Al menos el 80 por ciento de los recientes avances en IA se pueden atribuir a la disponibilidad de más potencia informática, estima Dileep George, cofundador de la start-up de aprendizaje de máquinas Vicarious.

Sin embargo, se requiere algo más aparte del enorme tamaño de los centros de datos de Google. El aprendizaje profundo también se ha beneficiado del método de división de las tareas de computación entre muchas máquinas, para así poder efectuarlas con mayor rapidez.

Esa es una tecnología que Dean ayudó a desarrollar con anterioridad, a lo largo de su carrera de 14 años en Google. Acelera enormemente el entrenamiento de las redes neuronales de aprendizaje profundo, permitiendo a Google trabajar con redes más grandes y usar muchos más datos con ellas.

El aprendizaje profundo ya ha logrado mejorar la búsqueda por voz en los teléfonos inteligentes. Hasta el año pasado, el software Android de Google utilizaba un método que entendía mal muchas palabras. Sin embargo, durante la preparación de una nueva versión de Android en julio pasado, Dean y su equipo ayudaron a reemplazar parte del sistema de voz por uno basado en el aprendizaje profundo. Puesto que las múltiples capas de neuronas permiten un entrenamiento más preciso basado en las múltiples variantes de un sonido, el sistema puede reconocer fragmentos de sonido de forma más fiable, especialmente en entornos ruidosos como una plataforma de metro. Y puesto que es más probable que entienda lo que realmente se ha pronunciado, es más probable que el resultado que devuelva sea también preciso.

En muy poco tiempo, el número de errores se redujo hasta en un 25 por ciento, y los resultados son tan buenos que muchos críticos consideran actualmente que la búsqueda de voz de Android es más inteligente que la del famoso asistente de voz Siri de Apple.

A pesar de todos los avances, no todo el mundo cree que el aprendizaje profundo pueda llevar la inteligencia artificial hasta un punto en que rivalice con la inteligencia humana. Algunos críticos señalan que el aprendizaje profundo y la IA en general ignoran gran parte de la biología del cerebro en favor de la fuerza bruta de computación.

¿Qué es lo próximo?

Aunque Google da muy pocos detalles sobre aplicaciones futuras, las perspectivas son muy interesantes. Está claro que por ejemplo una mejor búsqueda de imágenes ayudaría a YouTube. Y Dean señala que los modelos de aprendizaje profundo pueden utilizar datos de fonemas en inglés para entrenar rápidamente a los sistemas y que reconozcan sonidos hablados en otros idiomas. También es probable que el uso de un reconocimiento de imagen más sofisticado pueda hacer que los coches auto conducidos de Google mejoren notablemente. Además están las búsquedas y los anuncios relacionados con todo ello. Ambas cosas podrían mejorar enormemente gracias a cualquier tecnología que sea mejor y más rápida a la hora de reconocer lo que la gente realmente esté buscando, tal vez incluso antes de que se den cuenta.

Esto es lo que intriga a Kurzweil, de 65 años, que desde hace mucho tiempo tiene su propia visión sobre las máquinas inteligentes. En la escuela secundaria, escribió un programa que permitió a un ordenador crear música original en varios estilos clásicos, y del que hizo una demostración en 1965 en el programa estadounidense de televisión I've Got a Secret. Desde entonces, entre sus inventos se encuentran varias primicias: una máquina de lectura de impresión a voz, un software capaz de escanear y digitalizar textos impresos en cualquier tipo de letra, sintetizadores de música para recrear el sonido de los instrumentos de una orquesta, y un sistema de reconocimiento de voz con un amplio vocabulario.

Actualmente tiene en mente un 'amigo cibernético' que escuche nuestras conversaciones telefónicas, lea el correo electrónico y realice un seguimiento de todos nuestros movimientos, si se lo permitimos, por supuesto, para que nos pueda decir cosas que queramos saber, incluso antes de preguntarlas.

Más allá del reconocimiento del habla y las imágenes a más cortó plazo. Por un lado, está el descubrimiento de fármacos. La victoria por sorpresa del grupo de Hinton en el concurso de Merck demostró claramente la utilidad del aprendizaje profundo en un campo en el que muy poca gente esperaba que lograse crear algún tipo de impacto.

Eso no es todo. Peter Lee desde Microsoft afirma que las primeras investigaciones sobre los usos potenciales del aprendizaje profundo en la visión de máquinas son prometedoras. Estas tecnologías usan imágenes para aplicaciones tales como la inspección industrial y la guía de robots. También prevé la creación de sensores personales que las redes neuronales profundas podrían utilizar para predecir problemas médicos. Y sensores en toda la ciudad que enviarían datos a sistemas de aprendizaje profundos que podrían, por ejemplo, predecir dónde van a producirse atascos.

En un campo que trata de algo tan profundo como el modelado del cerebro humano, es inevitable que una técnica no vaya a resolver todos los problemas. Pero por ahora, esta está liderando el camino dentro de la inteligencia artificial. "El aprendizaje profundo", señala Dean, "es una metáfora muy potente para aprender sobre el mundo".

Los jóvenes y adolescentes no se limitan a ser usuarios pasivos de la Red: se vuelven actores proactivos en la apropiación social de Internet, por medio de las redes electrónicas comunitarias. Asistimos a la aparición y multiplicación de un verdadero fenómeno social: la multiplicación de las redes electrónicas comunitarias, usadas por los jóvenes o creadas por ellos mismos.

El trabajo recorre algunos ejemplos de actividad de los jóvenes en redes electrónicas comunitarias, en España y América Latina y el Caribe, y termina con una serie de propuestas.

Hoy el principal desafío consiste en mejorar la calidad de la enseñanza y hacerlo con equidad, es decir, asegurando que la oportunidad de recibir una buena educación se ofrezca especialmente a los hijos de familias de menores recursos. Además, es fundamental crear instancias donde los jóvenes se acerquen al mundo de la informática, pues esta es una disciplina que está y estará presente en todas las industrias.

Aunque valoro el inmenso aporte del Proyecto Enlaces (proyecto iniciado en 1992 y que ha significado una inversión sin precedentes en cuanto a acondicionamiento tecnológico y capacitación de profesores), creo que aún falta mucho para alcanzar un Chile con más y mejores profesionales TI.

Tengo la convicción que esto es posible, pero no podemos dejar esta responsabilidad sólo al Gobierno, ya que es tarea de las empresas y universidades entregar una mayor y mejor alfabetización informática, especialmente a quienes tienen menos acceso a ella.

http://www.technologyreview.es/read_article.aspx?id=42965

...

Descargar como  txt (13.1 Kb)  
Leer 8 páginas más »
txt