ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ley De Hooke

Valeta968 de Octubre de 2013

972 Palabras (4 Páginas)671 Visitas

Página 1 de 4

La ley de Hooke establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada :

siendo el alargamiento, la longitud original, : módulo de Young, la sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite elástico.

Ley de Hooke en solidos

Formula:

Caso unidimensional

En el caso de un problema unidimensional donde las deformaciones o tensiones en direcciones perpendiculares a una dirección dada son irrelevantes o se pueden ignorar , , y la ecuación anterior se reduce a:

donde es el módulo de Young.

Caso tridimensional isótropo

Para caracterizar el comportamiento de un sólido elástico lineal e isótropo se requieren además del módulo de Young otra constante elástica, llamada coeficiente de Poisson ( ). Por otro lado, las ecuaciones de Lamé-Hooke para un sólido elástico lineal e isótropo pueden ser deducidas del teorema de Rivlin-Ericksen, que pueden escribirse en la forma:

Caso tridimensional ortótropo

El comportamiento elástico de un material ortotrópico queda caracterizado por nueve constantes independientes: 3 módulos de elasticidad longitudinal , 3 módulos de rigidez y 3 coeficientes de Poisson . De hecho para un material ortotrópico la relación entre las componentes del tensor tensión y las componentes del tensor deformación viene dada por:

Formulas de solidos:

Ley de Hooke en resortes

La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación del muelle o resorte, donde se relaciona la fuerza ejercida en el resorte con la elongación o alargamiento producido:

donde se llama constante elástica del resorte y es su elongación o variación que experimenta su longitud.

La energía de deformación o energía potencial elástica asociada al estiramiento del resorte viene dada por la siguiente ecuación:

Es importante notar que la antes definida depende de la longitud del muelle y de su constitución. Definiremos ahora una constante intrínseca del resorte independiente de la longitud de este y estableceremos así la ley diferencial constitutiva de un muelle. Multiplicando por la longitud total, y llamando al producto o intrínseca, se tiene:

Llamaremos a la tensión en una sección del muelle situada una distancia x de uno de sus extremos que tomamos como origen de coordenadas, a la constante de un pequeño trozo de muelle de longitud a la misma distancia y al alargamiento de ese pequeño trozo en virtud de la aplicación de la fuerza . Por la ley del muelle completo:

que por el principio de superposición resulta:

Que es la ecuación diferencial del muelle. Si se integra para todo , se obtiene como ecuación de onda unidimensional que describe los fenómenos ondulatorios. La velocidad de propagación de las vibraciones en un resorte se calcula como:

Fomulas de resortes:

Ejemplos:

1.- Se utiliza un resorte helicoidal para sostener un peso de 2 N. Si se estira 2 cm:

¿Cuál es la constante del resorte?

¿Qué peso se necesita para estirarlo 4 cm?

Datos: Formula Desarrollo

F= 2N k= F/x k(2 N)/0.02m=100 N/m

x= 2cm = 0.02 m F= kx

k= ?

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com