La historia de las estadísticas
karoilysTesina12 de Noviembre de 2012
3.398 Palabras (14 Páginas)403 Visitas
RESEÑA HISTÓRICA DE LA ESTADÍSTICA
Desde los comienzos de la civilización han existido formas sencillas de estadística, pues ya se utilizaban representaciones gráficas y otros símbolos en pieles, rocas, palos de madera y paredes de cuevas para contar el número de personas, animales o cosas. Hacia el año 3000 a. C. los babilonios usaban pequeñas tablillas de arcilla para recopilar datos sobre la producción agrícola y sobre los géneros vendidos o cambiados mediante trueque. En el siglo XXXI a. C., mucho antes de construir las pirámides, los egipcios analizaban los datos de la población y la renta del país. Los libros bíblicos de Números y Crónicas incluyen, en algunas partes, trabajos de estadística. El primero contiene dos censos de la población de Israel y el segundo describe el bienestar material de las diversas tribus judías. En China existían registros numéricos similares con anterioridad al año 2000 a. C. Los griegos clásicos realizaban censos cuya información se utilizaba hacia el 594 a. C. para cobrar impuestos. El Imperio romano fue el primer gobierno que recopiló una gran cantidad de datos sobre la población, superficie y renta de todos los territorios bajo su control. Durante la edad media sólo se realizaron algunos censos exhaustivos en Europa. Los reyes carolingios Pipino el Breve y Carlomagno ordenaron hacer estudios minuciosos de las propiedades de la Iglesia en los años 758 y 762 respectivamente. Después de la conquista normanda de Inglaterra en 1066, el rey Guillermo I de Inglaterra encargó la realización de un censo. La información obtenida con este censo, llevado a cabo en 1086, se recoge en el Domesday Book. El registro de nacimientos y defunciones comenzó en Inglaterra a principios del siglo XVI, y en 1662 apareció el primer estudio estadístico notable de población, titulado Observations on the London Bills of Mortality Comentarios sobre las partidas de defunción en Londres. Un estudio similar sobre la tasa de mortalidad en la ciudad de Breslau, en Alemania, realizado en 1691, fue utilizado por el astrónomo inglés Edmund Halley como base para la primera tabla de mortalidad. En el siglo XIX, con la generalización del método científico para estudiar todos los fenómenos de las ciencias naturales y sociales, los investigadores aceptaron la necesidad de reducir la información a valores numéricos para evitar la ambigüedad de las descripciones verbales. En nuestros días, la estadística se ha convertido en un método efectivo para describir con exactitud los valores de datos económicos, políticos, sociales, psicológicos, biológicos o físicos, y sirve como herramienta para relacionar y analizar dichos datos. El trabajo del experto estadístico no consiste ya sólo en reunir y tabular los datos, sino sobre todo en el proceso de “interpretación” de esa información. El desarrollo de la teoría de la probabilidad ha aumentado el alcance de las aplicaciones de la estadística. Muchos conjuntos de datos se pueden aproximar, con gran exactitud, utilizando determinadas distribuciones probabilísticas; los resultados de éstas se pueden utilizar para analizar datos estadísticos. La probabilidad es útil para comprobar la fiabilidad de las inferencias estadísticas y para predecir el tipo y la cantidad de datos necesarios en un determinado estudio estadístico.
ESTADISTICA
• La Estadística es una ciencia formal que estudia la recolección, análisis e interpretación de datos de una muestra representativa, ya sea para ayudar en la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo, la estadística es más que eso, es decir, es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica.
• La estadística n.f. Ciencia cuyo objeto es reunir una información cuantitativa concerniente a individuos, grupos, series de hecho, etc, y deducir de ella, gracias al análisis de estos datos, unos significados preciso o unas previsiones para el futuro.
El resultado de estudio de dichos procesos, denominados procesos aleatorios, puede ser de naturaleza cualitativa o cuantitativa y, en este último caso, discreta o continua.
• Procesos aleatorios cualitativos: ejemplos tales como el resultado de la tiradade una dado, el resultado del lanzamiento de una moneda son procesos de naturalidad cualitativa. Es decir, los resultados que pueden aparecer en su atributo no son números.
• Procesos aleatorios cuantitativos: veamos otro tipo de ejemplo tales como: demanda diaria de un determinado medicamento en una farmacia; el numero de concurrentes a las clases de una determinada materia; el porcentaje de sobresalientes e el examen final de una determinada asignatura. Estos ejemplos son de naturaleza cuantitativa, es decir, nos permiten realizar una clasificación por variable.
CAMPOS DE APLICACIÓN DE LA ESTADÍSTICA
La estadística es una ciencia de aplicación práctica casi universal en todos los campos científicos:
• En las ciencias naturales: se emplea con profusión en la descripción de modelos termodinámicos complejos (mecánica estadística), en física cuántica, en mecánica de fluidos o en la teoría cinética de los gases, entre otros muchos campos.
• En las ciencias sociales y económicas: es un pilar básico del desarrollo de la demografía y la sociología aplicada.
• En economía: suministra los valores que ayudan a descubrir interrelaciones entre múltiples parámetros macro y microeconómicos.
• En las ciencias médicas: permite establecer pautas sobre la evolución de las enfermedades y los enfermos, los índices de mortalidad asociados a procesos morbosos, el grado de eficacia de un medicamento, etcétera.
Durante el siglo XX, la creación de instrumentos precisos para asuntos de salud pública (epidemiología, bioestadística, etc.) y propósitos económicos y sociales (tasa de desempleo, econometría, etc.) necesitó de avances sustanciales en las prácticas estadísticas.
Hoy el uso de la estadística se ha extendido más allá de sus orígenes como un servicio al Estado o al gobierno. Personas y organizaciones usan la estadística para entender datos y tomar decisiones en ciencias naturales y sociales, medicina, negocios y otras áreas. La estadística es entendida generalmente no como un sub-área de las matemáticas sino como una ciencia diferente «aliada». Muchas universidades tienen departamentos académicos de matemáticas y estadística separadamente. La estadística se enseña en departamentos tan diversos como psicología, educación y salud pública.
Al aplicar la estadística a un problema científico, industrial o social, se comienza con un proceso o población a ser estudiado. Esta puede ser la población de un país, de granos cristalizados en una roca o de bienes manufacturados por una fábrica en particular durante un periodo dado. También podría ser un proceso observado en varios instantes y los datos recogidos de esta manera constituyen una serie de tiempo.
Por razones prácticas, en lugar de compilar datos de una población entera, usualmente se estudia un subconjunto seleccionado de la población, llamado muestra. Datos acerca de la muestra son recogidos de manera observacional o experimental. Los datos son entonces analizados estadísticamente lo cual sigue dos propósitos: descripción e inferencia.
El concepto de correlación es particularmente valioso. Análisis estadísticos de un conjunto de datos puede revelar que dos variables (esto es, dos propiedades de la población bajo consideración) tienden a variar conjuntamente, como si hubiera una conexión entre ellas. Por ejemplo un estudio del ingreso anual y la edad de muerte entre personas podrían resultar en que personas pobres tienden a tener vidas más cortas que personas de mayor ingreso. Las dos variables se dicen a ser correlacionadas. Sin embargo, no se pude inferir inmediatamente la existencia de una relación de causalidad entre las dos variables. El fenómeno correlacionado podría ser la causa de un tercero, previamente no considerado, llamado variable confundida.
Si la muestra es representativa de la población, inferencias y conclusiones hechas en la muestra pueden ser extendidas a la población completa. Un problema mayor es el de determinar que tan representativa es la muestra extraída. La estadística ofrece medidas para estimar y corregir por aleatoriedad en la muestra y en el proceso de recolección de los datos, así como métodos para diseñar experimentos robustos como primera medida, ver diseño experimental.
El concepto matemático fundamental empleado para entender la aleatoriedad es el de probabilidad. La estadística matemática es la rama de las matemáticas aplicadas que usa la teoría de probabilidades y el análisis matemático para examinar las bases teóricas de la estadística.
El uso de cualquier método estadístico es válido solo cuando el sistema o población bajo consideración satisface los supuestos matemáticos del método. El mal uso de la estadística puede producir serios errores en la descripción e interpretación, afectando las políticas sociales, la práctica médica y la calidad de estructuras tales como puentes y plantas de reacción nuclear.
Incluso cuando la estadística es correctamente aplicada, los resultados pueden ser difícilmente interpretados por un no experto. Por ejemplo, el significado estadístico de una tendencia en los datos, que mide el grado al cual la tendencia puede ser causada por una variación aleatoria en la muestra, puede no estar de acuerdo con el sentido intuitivo. El conjunto
...