Fibra De Carbono
maft149217 de Agosto de 2013
3.592 Palabras (15 Páginas)793 Visitas
La fibra de carbono
La fibra de carbono o fibrocarbono es un material formado por fibras de 50-10 micras de diámetro, compuesto principalmente de átomos de carbono. Los átomos de carbono están unidos entre sí en cristales que son más o menos alineados en paralelo al eje longitudinal de la fibra. La alineación de cristal da a la fibra de alta resistencia en función del volumen (lo hace fuerte para su tamaño). Varios miles de fibras de carbono están trenzados para formar un hilo, que puede ser utilizado por sí mismo o tejido en una tela.
Las propiedades de las fibras de carbono, tales como una alta flexibilidad, alta resistencia, bajo peso, tolerancia a altas temperaturas y baja expansión térmica, las hacen muy populares en la industria aeroespacial, ingeniería civil, aplicaciones militares, deportes de motor junto con muchos otros deportes. Sin embargo, son relativamente caros en comparación con las fibras similares, tales como fibras de vidrio o fibras de plástico, lo que limita en gran medida su uso.
Las fibras de carbono generalmente se combinan con otros materiales para formar un compuesto. Cuando se combina con una resina plástica es moldeada para formar un plástico reforzado con fibra de carbono (a menudo denominado también como fibrocarbono) el cual tiene una muy alta relación resistencia-peso, extremadamente rígido, aunque el material es un tanto frágil. Sin embargo, las fibras de carbono también se combinan con otros materiales, como por ejemplo con el grafito para formar compuestos carbono-carbono, que tienen una tolerancia térmica muy alta.
La fibra de carbono es el desarrollo más reciente en el campo de los materiales compuestos siguiendo la idea de que uniendo fibras sintéticas con varias resinas, se pueden lograr materiales de baja densidad, muy resistentes y duraderos.
La fibra de carbono (FC) se desarrolló inicialmente para la industria espacial, pero ahora, al bajar de precio, se ha extendido a otros campos: la industria del transporte, aeronáutica, al deporte de alta competición y, últimamente encontramos la FC hasta en carteras de bolsillo y relojes.
La FC está compuesta por muchos hilos de carbono en forma de hebra. Existen muchas clases de FC con propiedades diversas, adaptadas a muchas aplicaciones.
Para hacernos una idea, basta comparar la FC con el acero:
Característica FC Acero
Mód. de resistencia a la tracción 3,5 1,3
Resistencia específica 2,0 0,17
Densidad 1,75 7,9
Su resistencia es casi 3 veces superior a la del acero, y su densidad es 4,5 veces menor.
En cuanto a módulo de elasticidad hay una amplia gama de FC desde 240 hasta 400.
Otras propiedades muy apreciables en la fibra de carbono son la resistencia a la corrosión, al fuego e inercia química y la conductividad eléctrica. Ante variaciones de temperatura conserva su forma.
La fibra de carbono es un polímero convertido en fibra. En la mayoría de los casos, las FC permanecen como carbón no grafítico. El término fibra de grafito solo está justificado, cuando las FC han sido sometidas a un tratamiento térmico de grafitización (2000-3000 ºC), que les confiere un orden cristalino tridimensional, observable mediante rayos X.
La cristalografía de rayos X nos permite conocer la estructura exacta de cada tipo de FC. Nos resulta extraño, pero nos recuerda mucho al grafito: una estructura hexagonal. El grafito, la mina de lápiz, es todo lo contrario: blando y frágil. Es un alótropo del carbono.
Historia
En 1958, Roger Bacon creó fibras de alto rendimiento de carbono en el Centro Técnico de la Union Carbide Parma, ahora GrafTech International Holdings, Inc., que se encuentra en las afueras de Cleveland, Ohio. Estas fibras se fabricaban mediante el calentamiento de filamentos de rayón hasta carbonizarlos. Este proceso resultó ser ineficiente, ya que las fibras resultantes contenían sólo un 20% de carbono y tenían malas propiedades de fuerza y de rigidez.
En la década de 1960, un proceso desarrollado por Akio Shindo de la Agencia de Ciencia Industrial Avanzada y Tecnología de Japón, con poliacrilonitrilo (PAN) como materia prima. Este había producido una fibra de carbono que contiene alrededor del 55% de carbono.
El alto potencial de la fibra de carbono fue aprovechado en 1963 en un proceso desarrollado en el Establecimiento Real de aeronaves en Hampshire, Reino Unido. El proceso fue patentado por el Ministerio de Defensa del Reino Unido y luego autorizada a tres empresas británicas: Rolls-Royce, Morganita y Courtaulds. Estas empresas fueron capaces de establecer instalaciones de producción industrial de fibra de carbono. Rolls-Royce se aprovechó de las propiedades del nuevo material para entrar en el mercado americano con motores para aviones.
Por desgracia, Rolls-Royce empujó el estado de la técnica demasiado lejos, demasiado rápido, en el uso de fibra de carbono en las aspas del compresor del motor de aviones, que resultó ser vulnerables a daños por impacto de aves. Lo que parecía un gran triunfo tecnológico en 1968 se convirtió rápidamente en un desastre. De hecho, los problemas de Rolls-Royce se hizo tan grande que la empresa fue nacionalizada por el gobierno británico en 1971 y la planta de producción de fibra de carbono fue vendida a la forma "Bristol composites".
Dado el limitado mercado para un producto muy caro, de calidad variable, Morganite también decidió que la producción de fibra de carbono era periférica respecto a su negocio principal, dejando Courtaulds como el único fabricante grande del Reino Unido. Esta compañía continuó la fabricación de fibras de carbono, con el desarrollo de dos mercados principales: el aeroespacial y de equipamiento deportivo. La velocidad de la producción y la calidad del producto se han mejorado desde entonces.
Durante la década de 1970, los trabajos experimentales para encontrar materias primas alternativas llevaron a la introducción de fibras de carbono a partir de una brea de petróleo derivadas de la transformación del petróleo. Estas fibras contenían alrededor de 85% de carbono y tenía una excelente resistencia a la flexión.
Estructura y propiedades
Cada hilo de filamento de carbono es un conjunto de muchos miles de filamentos de carbono. Uno de estos filamentos es un tubo delgado con un diámetro de 5.8 micrómetros y se compone casi exclusivamente de carbono. La primera generación de fibras de carbono (es decir, T300 y AS4) tenían un diámetro de 7.8 micrómetros. Más tarde, se alcanzaron fibras (IM6) con diámetros que son aproximadamente de 5 micras.
Tela de fibra de carbono
La estructura atómica de la fibra de carbono es similar a la del grafito, que consiste en láminas de átomos de carbono (láminas de grafeno) dispuestos siguiendo un patrón hexagonal regular. La diferencia radica en la forma en que se vinculan las láminas.
El grafito es un material cristalino en el cual las láminas se apilan paralelas entre sí de manera regular. Las fuerzas intermoleculares entre las láminas son relativamente débiles (fuerzas de Van der Waals), dando al grafito sus características blandas y quebradizas.
Dependiendo del precursor para hacer la fibra, la fibra de carbono puede ser turbostráticas o grafíticas, o tienen una estructura híbrida con las partes presentes tanto en grafíticas y turbostráticas.
En fibra de carbono turbostráticas las láminas de átomos de carbono se apilan al azar o en forma irregular. Las fibras de carbono derivadas del poliacrilonitrilo (PAN) son turbostráticas, mientras que las fibras de carbono derivadas de la brea de mesofase son grafíticas después del tratamiento térmico a temperaturas superiores a 2.200°C.
Las fibras de carbono turbostráticas tienden a tener alta resistencia a la tracción, mientras que un tratamiento térmico en la brea de mesofase derivada en fibras de carbono con un alto módulo de Young (es decir, baja elasticidad) y alta conductividad térmica.
Aplicaciones de la fibra de carbono
La fibra de carbono se utiliza principalmente para reforzar materiales compuestos, para obtener materiales conocidos como plásticos reforzados con fibra de carbono (PRFC). Las técnicas utilizadas para materiales poliméricos son: moldeo manual (hand lay up), espreado (spray lay up), pultrusión, bobinado de hilo, compresión, BMC, SMC, SCRIMP, RTM, etc. Los materiales no poliméricos también se puede utilizar como matriz de las fibras de carbono. Debido a la formación de metal carburos metálicos y corrosión, el fibrocarbono ha tenido un éxito limitado en aplicaciones de compuestos de matriz metálica. El RCC (carbono-carbono reforzado) se compone de refuerzo de fibrocarbono con grafito, y se utiliza estructuralmente en aplicaciones de alta temperatura. La fibra también tiene uso en la filtración de gases a alta temperatura, como electrodo de gran superficie e impecable resistencia a la corrosión, y como un componente anti-estático.
La demanda global de materiales compuestos de fibra de carbono se valoró en aproximadamente EE.UU. $ 10,8 mil millones de dólares en 2009, el cual disminuyó 10.8% respecto al año anterior. Se espera que llegue en EE.UU. a 13,2 mil millones de dólares en 2012 y que aumente a 18,6 mil millones de dólares en EE.UU. en 2015 con una tasa de crecimiento anual del 7% o más. Las demandas más fuertes provienen de las industrias aeronáutica y aeroespacial, de la
...