The role of a production engineer
raff9710 de Febrero de 2014
524 Palabras (3 Páginas)539 Visitas
The role of a production engineer is to maximize oil and
gas production in a cost-effective manner. Familiarization
and understanding of oil and gas production systems are
essential to the engineers. This chapter provides graduat-ing production engineers with some basic knowledge
about production systems. More engineering principles
are discussed in the later chapters.
As shown in Fig. 1.1, a complete oil or gas production
system consists of a reservoir, well, flowline, separators,
pumps, and transportation pipelines. The reservoir sup-plies wellbore with crude oil or gas. The well provides a
path for the production fluid to flow from bottom hole to
surface and offers a means to control the fluid production
rate. The flowline leads the produced fluid to separators.
The separators remove gas and water from the crude oil.
Pumps and compressors are used to transport oil and gas
through pipelines to sales points.
1.2 Reservoir
Hydrocarbon accumulations in geological traps can be clas-sified as reservoir, field, and pool. A ‘‘reservoir’’ is a porous
and permeable underground formation containing an indi-vidual bank of hydrocarbons confined by impermeable rock
or water barriers and is characterized by a single natural
pressure system. A ‘‘field’’ is an area that consists of one or
more reservoirs all related to the same structural feature. A
‘‘pool’’ contains one or more reservoirs in isolated structures.
Depending on the initial reservoir condition in the phase
diagram (Fig. 1.2), hydrocarbon accumulations are classi-fied as oil, gas condensate, and gas reservoirs. An oil that
is at a pressure above its bubble-point pressure is called an
‘‘undersaturated oil’’ because it can dissolve more gas at
the given temperature. An oil that is at its bubble-point
pressure is called a ‘‘saturated oil’’ because it can dissolve
no more gas at the given temperature. Single (liquid)-phase
flow prevails in an undersaturated oil reservoir, whereas
two-phase (liquid oil and free gas) flow exists in a sat-urated oil reservoir.
Wells in the same reservoir can fall into categories of
oil, condensate, and gas wells depending on the producing
gas–oil ratio (GOR). Gas wells are wells with producing GOR
being greater than 100,000 scf/stb; condensate wells are those
with producing GOR being less than 100,000 scf/stb but
greater than 5,000 scf/stb; and wells with producing GOR
being less than 5,000 scf/stb are classified as oil wells.
Oil reservoirs can be classified on the basis of boundary
type, which determines driving mechanism, and which are
as follows:
.Water-drive reservoir
.Gas-cap drive reservoir
.Dissolved-gas drive reservoir
In water-drive reservoirs, the oil zone is connected by
a continuous path to the surface groundwater system (aqui-fer). The pressure caused by the ‘‘column’’ of water to the
surface forces the oil (and gas) to the top of the reservoir
against the impermeable barrier that restricts the oil and gas
(the trap boundary). This pressure will force the oil and gas
toward the wellbore. With the same oil production, reservoir
pressure will be maintained longer (relative to other mech-anisms of drive) when there is an active water drive. Edge-water drive reservoir is the most preferable type of reservoir
compared to bottom-water drive. The reservoir pressure can
remain at its initial value above bubble-point pressure so that
single-phase liquid flow exists in the reservoir for maximum
well productivity. A steady-state
...