ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Aplicación De La Trionometria En Distintos Campos Del Saber

rubenmejia0930 de Noviembre de 2013

6.140 Palabras (25 Páginas)336 Visitas

Página 1 de 25

MARCO TEÓRICO:

DESARROLLO HISTÓRICO DE LA TRIGONOMETRÍA

La Trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los

triángulos. Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de

un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para la construcción de

pirámides. También se desarrollo a partir de los primeros esfuerzos hechos para avanzar en el estudio de la

astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud

en la navegación y en el cálculo del tiempo y los calendarios.

El estudio de la trigonometría pasó después a Grecia, en donde se destaca el matemático y astrónomo Griego

Hiparco, por haber sido uno de los principales desarrolladores de la Trigonometría. Las tablas de ―cuerdas‖ que

construyo fueron las precursoras de las tablas de las funciones trigonométricas de la actualidad.

Desde Grecia, la trigonometría pasó a la India y Arabia donde era utilizada en la Astronomía. Y desde Arabia se

difundió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente

que hace parte de la matemática.

Es así, como en este trabajo, se expondrá la historia y desarrollo de la trigonometría y de acuerdo a esto,

fechas, épocas y principales precursores o personajes que lideraron el proceso o dieron los pasos

fundamentales para el posterior desarrollo de esta importante rama de las matemáticas. Junto con esto, una

biografía de cada uno de los exponentes y una línea del tiempo con personajes y descubrimientos para una

mayor comprensión.

HISTORIA DE LA TRIGONOMETRÍA

La historia de la trigonometría comienza con los Babilonios y los Egipcios. Estos últimos establecieron la medida

de los ángulos en grados, minutos y segundos. Sin embargo, en los tiempos de la Grecia clásica, en el siglo II

a.C. el astrónomo Hiparco de Nicea construyó una tabla de cuerdas para resolver triángulos. Comenzó con un

ángulo de 71° y yendo hasta 180° con incrementos de 71°, la tabla daba la longitud de la cuerda delimitada por

los lados del ángulo central dado que corta a una circunferencia de radio r. No se sabe el valor que Hiparco

utilizó para r.

300 años después, el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico (base

60) de los babilonios.

Durante muchos siglos, la trigonometría de Tolomeo fue la introducción básica para los astrónomos. El libro de

astronomía el Almagesto, escrito por él, también tenía una tabla de cuerdas junto con la explicación de su

método para compilarla, y a lo largo del libro dio ejemplos de cómo utilizar la tabla para calcular los elementos

desconocidos de un triángulo a partir de los conocidos. El teorema de Menelao utilizado para resolver triángulos

esféricos fue autoría de Tolomeo.

Al mismo tiempo, los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en

la función seno en vez de cuerdas como los griegos. Esta función seno, era la longitud del lado opuesto a un

ángulo en un triángulo rectángulo de hipotenusa dada. Los matemáticos indios utilizaron diversos valores para

ésta en sus tablas.

A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían

completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas

fundamentales de la trigonometría tanto para triángulos planos como esféricos. Los matemáticos sugirieron el

uso del valor r = 1 en vez de r = 60, y esto dio lugar a los valores modernos de las funciones trigonométricas

El occidente latino se familiarizó con la trigonometría Árabe a través de traducciones de libros de astronomía

arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue

escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano.

A principios del siglo XVII, el matemático Jhon Napier inventó los logaritmos y gracias a esto los cálculos

trigonométricos recibieron un gran empuje.

A mediados del siglo XVII Isaac Newton inventó el cálculo diferencial e integral. Uno de los fundamentos del

trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de

potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con

la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy

desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.

3

Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría

eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas

utilizando expresiones con exponenciales de números complejos.

Quién era Hiparco de Nicea

(c. 190-120 a.C), Hiparco de Nicea fue astrónomo griego, el más importante de su época. Nació en Nicea,

Bitinia (hoy Iznik, Turquía). Fue extremadamente preciso en sus investigaciones, de las que conocemos parte

por comentarse en el tratado científico Almagesto del astrónomo alejandrino Tolomeo, sobre quien ejerció gran

influencia. Comparando sus estudios sobre el cielo con los de los primeros astrónomos, Hiparco descubrió la

precisión de los equinoccios .Sus cálculos del año tropical, duración del año determinada por las estaciones,

tenían un margen de error de 6,5 minutos con respecto a las mediciones modernas. También inventó un

método para localizar posiciones geográficas por medio de latitudes y longitudes. Catalogó, hizo gráficos y

calculó el brillo de unas mil estrellas. También recopiló una tabla de cuerdas trigonométricas que fueron la base

de la trigonometría moderna.

Quién era Tolomeo

(c. 100-c. 170), Claudio Tolomeo, fue un astrónomo y matemático que dominó el pensamiento científico hasta el

siglo XVI por sus teorías y explicaciones astronómicas. Posiblemente nació en Grecia, pero su verdadero

nombre, Claudius Ptolemaeus, dice lo que realmente se sabe de él: 'Ptolemaeus' indica que vivía en Egipto y

'Claudius' que era ciudadano romano.

Contribuyó a las matemáticas con sus estudios en trigonometría y aplicó sus teorías a la construcción de

astrolabios y relojes de sol.

Quién era Euler.

(1707-1783), Leonhard Euler fue un matemático suizo, sus trabajos se centraron en el campo de las

matemáticas puras, Euler nació en Basilea y se licenció a los 16 años. En 1727, fue miembro del profesorado

de la Academia de Ciencias de San Petersburgo. Fue nombrado catedrático de física en 1730 y de matemáticas

en 1733. En 1741 fue profesor de matemáticas en la Academia de Ciencias de Berlín. Euler regresó a San

Petersburgo en 1766, donde permaneció hasta su muerte. Aunque tuvo una pérdida parcial de visión antes de

cumplir 30 años y una ceguera casi total al final de su vida, produjo obras matemáticas importantes, como

reseñas matemáticas y científicas.

En su Introducción al análisis de los infinitos (1748), trató la trigonometría y la geometría analítica. Entre sus

obras se encuentran Instituciones del cálculo diferencial (1755), Instituciones del cálculo integral (1768-1770) e

Introducción al álgebra (1770).

Quien era John Napier

(1550-1617), Napier fue un matemático escocés nacido en Merchiston, cerca de Edimburgo. Estudió en la

Universidad de San Andrés y allí fue seguidor del movimiento de la Reforma en Escocia, después de unos años

tomó parte en los asuntos políticos de los protestantes y es autor de la primera interpretación importante en

Escocia de la Biblia.

Principalmente es conocido por introducir el primer sistema de logaritmos, (1614). Además, fue uno de los

primeros, si no el primero, en utilizar la moderna notación decimal para expresar fracciones decimales de una

forma sistemática.

Así pues, se pretendía clarificar la historia de la trigonometría para así poder tener una visión mucho más

amplia de su desarrollo y de igual manera un mayor entendimiento acerca del tema.

Fue así, como la trigonometría avanzó, hasta convertirse en una rama independiente que hace parte de la

matemática. Pero esto no quiere decir que los avances, descubrimientos e investigaciones no hayan

continuado. Es decir, que el estudio de la trigonometría actualmente, no solo se limita a las relaciones entre los

elementos de un triangulo y a sus aplicaciones. Hoy día, la trigonometría, es parte de la matemática y se

emplea en muchos campos del conocimiento, tanto teóricos como prácticos, e interviene en toda clase de

investigaciones geométricas y algebraicas en las cuales aparecen las llamadas funciones trigonométricas, de

gran aplicación además en la electricidad, termodinámica, investigación atómica entre otras.

APORTES DE LA TRIGONOMETRÍA

...

Descargar como (para miembros actualizados) txt (40 Kb)
Leer 24 páginas más »
Disponible sólo en Clubensayos.com