CONDUCCION ELECTRICA
betoyaz305 de Marzo de 2014
3.980 Palabras (16 Páginas)487 Visitas
Conducción eléctrica de
los materiales:
N
o todos los materiales conducen la electricidad de la misma forma. Para diferenciarlos, decimos que algunos presentan mayor “resistencia” que otros a conducir la electricidad.
La resistencia eléctrica es una medida cuantitativa respecto de cuán buen conductor es un material. La resistencia eléctrica se mide en ohmios, en honor a Georg Simon Ohm (1787-1854), que desarrolló los principios agrupados en la ley de Ohm (ver recuadro). A los materiales que presentan baja resistencia eléctrica se les llama buenos conductores eléctricos. A su vez, a aquellos que poseen alta resistencia eléctrica se les denomina malos conductores eléctricos. Cambios en la resistencia ¿Qué puede hacer cambiar la resistencia eléctrica en un material conductor? Volvamos a nuestro modelo del “juego de las manzanas verdes”. Si permitimos que más individuos se incorporen al juego y, de este modo, aumentamos la longitud del grupo en relación al campo de juego, ¿qué sucederá con la conducción de las manzanas? Pues bien, dado que ahora existe una mayor cantidad de individuos a través de los cuales debe pasar cada manzana, observaremos que la conducción cambia. Esto, pues habiendo una mayor cantidad de personas, aumenta el número de manzanas que se caen al suelo, o bien el número de ellas que son mordisqueadas, lo que trae como consecuencia que la conducción empeore.
Por otra parte, si en vez de aumentar la longitud del grupo, aumentamos el espacio por donde pasarán las manzanas es decir, aumentamos el ancho, incorporando más jugadores distribuidos en el campo de juego, también observaremos que la conducción cambia. Puesto que, si bien en este caso, al aumentar la cantidad de individuos, es mayor la cantidad de manzanas que se caen al suelo o son mordisqueadas, a su vez es mayor también la cantidad de manzanas que circulan por el grupo, dado que al aumentar el ancho de este hay más personas sacando manzanas desde los cajones, con lo cual observaremos -contrario al caso anterior, donde solo saca manzanas quien está al comienzo de la fila de jugadores que la conducción de manzanas mejora.
Análogamente a nuestro modelo, en un material conductor la resistencia eléctrica aumenta mientras mayor sea el largo del conductor por el cual circula una corriente, y disminuye cuando aumenta el área de este.
Ley De Ohm
Georg Simon Ohm
Dado que una diferencia de potencial o voltaje aplicada sobre un material conductor hace que los electrones libres se muevan, asimismo, la existencia de un niño travieso en el modelo del “juego de las manzanas verdes” hace que las manzanas se muevan en el campo de fútbol.
Si nosotros permitiéramos que más niños traviesos ingresaran al campo de fútbol, tendríamos una mayor cantidad de manzanas atravesándolo. Es decir, con el aumento del número de niños se incrementa la corriente de manzanas que atraviesan el campo de juego.
En un material conductor, el aumento en la diferencia de potencial entre los extremos de este produce un cambio en la corriente eléctrica. Lo anterior es conocido como ley de Ohm, y fue desarrollada por Georg Simon Ohm (1787-1854).
Esta ley postula que la diferencia de potencial es proporcional a la corriente que atraviesa un conductor. Es decir, en la medida que aumenta la diferencia de potencial o voltaje se incrementa la magnitud de la corriente. Asimismo, si disminuye la diferencia de potencial, también bajará la magnitud de la corriente eléctrica.
Propiedades Químicas De Los Metales
Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos. Por el contrario, elementos no metálicos como el nitrógeno, azufre y cloro tienen valencias negativas en la mayoría de sus compuestos, y tienden a adquirir electrones y a formar óxidos ácidos.
Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes. De este modo, los metales forman sales como cloruros, sulfuros y carbonatos, actuando como agentes reductores (donantes de electrones).
Estructura Electrónica
En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un 'mar' homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen.
En 1928, el físico alemán Arnold Sommerfeld sugirió que los electrones en los metales se encuentran en una disposición cuántica en la que los niveles de baja energía disponibles para los electrones se hallan casi completamente ocupados. En el mismo año, el físico suizo estadounidense Felix Bloch, y más tarde el físico francés Louis Brillouin, aplicaron esta idea en la hoy aceptada 'teoría de la banda' para los enlaces en los sólidos metálicos.
Conductor eléctrico:
Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a una temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.
Electrones de conducción y huecos:
Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica. En un semiconductor característico o puro como el silicio, los electrones de valencia (o electrones exteriores) de un átomo están emparejados y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido. Estos electrones de valencia no están libres para transportar corriente eléctrica. Para producir electrones de conducción, se utiliza la luz o la temperatura, que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transmitir la corriente. Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Éste es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura.
Dopar:
Otro método para obtener electrones para el transporte de electricidad consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). Este concepto se ilustra en el diagrama adjunto, que muestra un cristal de silicio dopado. Cada átomo de silicio tiene cuatro electrones de valencia (representados mediante puntos). Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad.
Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra. Las propiedades de conductividad de la unión pn dependen de la dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo. Algunas series de estas uniones se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores.
Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal - óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se
...