ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Curtosis

gusagusiSíntesis23 de Abril de 2015

677 Palabras (3 Páginas)510 Visitas

Página 1 de 3

Curtosis.

El coeficiente de curtosis mide cuan 'puntiaguda' es una distribución respecto de un estándar. Este estándar es una forma acampanada denominada 'normal', y corresponde a una curva de gran importancia en estadística.

El coeficiente de curtosis está definido por:

De acuerdo a su valor, la 'puntudez' de los datos puede clasificarse en tres grupos:

Leptocúrticos, con valores grandes para el coeficiente.

Mesocúrticos, con valores medianos para el coeficiente.

Platicúrticos, con valores pequeños para el coeficiente.

Las siguientes figuras muestran gráficamente los tres tipos de curvas de acuerdo a la definición anterior:

Leptocúrtica

Platicúrtica

Mesocúrtica

Una curva Mesocúrtica tiene un Coeficiente de Curtosis cercano a cero. Una Leptocúrtica, un valor notoriamente mayor que cero y una Platicúrtica valores menores que cero.

1. ASIMETRÍA

Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes [Fig.5-1], cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de lamedia aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce comoasimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media.

Figura 5-1

El Coeficiente de asimetría, se representa mediante la ecuación matemática,

Ecuación 5-9

Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, ( ) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan:

• (g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad de valores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (± 0.5).

• (g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media.

• (g1 < 0): La curva es asimétricamente negativa por lo que los valores se tienden a reunir más en la parte derecha de la media.

Desde luego entre mayor sea el número (Positivo o Negativo), mayor será ladistancia que separa la aglomeración de los valores con respecto a la media.

2. CURTOSIS

Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).

Figura 5-2

Para calcular el coeficiente de Curtosis se utiliza la ecuación:

Ecuacion 5-10

Donde (g2) representa el coeficiente de Curtosis, (Xi) cada uno de los valores, ( ) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta fórmula se interpretan:

• (g2 = 0) la distribución es Mesocúrtica: Al igual que en la asimetría es bastante difícil encontrar un coeficiente de Curtosis de cero (0), por lo que se suelen aceptar los valores cercanos (± 0.5 aprox.).

• (g2 > 0) la distribución es Leptocúrtica

• (g2

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com