ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FISICA Y ELECTROMAGNETISMO


Enviado por   •  8 de Agosto de 2014  •  2.093 Palabras (9 Páginas)  •  226 Visitas

Página 1 de 9

CAMPO ELECTRICO

El campo eléctrico existe cuando existe una carga y representa el vínculo entre ésta y otra carga al momento de determinar la interacción entre ambas y las fuerzas ejercidas. Tiene carácter vectorial (campo vectorial) y se representa por medio de líneas de campo. Si la carga es positiva, el campo eléctrico es radial y saliente a dicha carga. Si es negativa es radial y entrante.

Campo eléctrico

La unidad con la que se mide es:

La letra con la que se representa el campo eléctrico es la E.

Al existir una carga sabemos que hay un campo eléctrico entrante o saliente de la misma, pero éste es comprobable únicamente al incluir una segunda carga (denominada carga de prueba) y medir la existencia de una fuerza sobre esta segunda carga.

Algunas características

- En el interior de un conductor el campo eléctrico es 0.

- En un conductor con cargas eléctricas, las mismas se encuentran en la superficie.

Una carga eléctrica puntual q (carga de prueba) sufre, en presencia de otra carga q1 (carga fuente), una fuerza electrostática. Si eliminamos la carga de prueba, podemos pensar que el espacio que rodea a la carga fuente ha sufrido algún tipo de perturbación, ya que una carga de prueba situada en ese espacio sufrirá una fuerza.

La perturbación que crea en torno a ella la carga fuente se representa mediante un vector denominado campo eléctrico. La dirección y sentido del vector campo eléctrico en un punto vienen dados por la dirección y sentido de la fuerza que experimentaría una carga positiva colocada en ese punto: si la carga fuente es positiva, el campo eléctrico generado será un vector dirigido hacia afuera (a) y si es negativa, el campo estará dirigido hacia la carga (b):

El campo eléctrico E creado por la carga puntual q1 en un punto cualquiera P se define como:

Donde q1 es la carga creadora del campo (carga fuente), K es la constante electrostática, r es la distancia desde la carga fuente al punto P y ur es un vector unitario que va desde la carga fuente hacia el punto donde se calcula el campo eléctrico (P). El campo eléctrico depende únicamente de la carga fuente (carga creadora del campo) y en el Sistema Internacional se mide en N/C o V/m.

Si en vez de cargas puntuales se tiene de una distribución continua de carga (un objeto macroscópico cargado), el campo creado se calcula sumando el campo creado por cada elemento diferencial de carga, es decir:

Esta integral, salvo casos concretos, es difícil de calcular. Para hallar el campo creado por distribuciones continuas de carga resulta más práctico utilizar la Ley de Gauss.

Una vez conocido el campo eléctrico E en un punto P, la fuerza que dicho campo ejerce sobre una carga de prueba q que se sitúe en P será:

Por tanto, si la carga de prueba es positiva, la fuerza que sufre será paralela al campo eléctrico en ese punto, y si es negativa la fuerza será opuesta al campo, independientemente del signo de la carga fuente.

En la siguiente figura se representa una carga fuente q1 positiva (campo eléctrico hacia afuera) y la fuerza que ejerce sobre una carga de prueba q positiva (a) y sobre otra negativa (b):

El campo eléctrico cumple el principio de superposición, por lo que el campo total en un punto es la suma vectorial de los campos eléctricos creados en ese mismo punto por cada una de las cargas fuente.

Líneas de campo

El concepto de líneas de campo (o líneas de fuerza) fue introducido por Michael Faraday (1791-1867). Son líneas imaginarias que ayudan a visualizar cómo va variando la dirección del campo eléctrico al pasar de un punto a otro del espacio. Indican las trayectorias que seguiría la unidad de carga positiva si se la abandona libremente, por lo que las líneas de campo salen de las cargas positivas y llegan a las cargas negativas:

Además, el campo eléctrico será un vector tangente a la línea en cualquier punto considerado

Las propiedades de las líneas de campo se pueden resumir en:

El vector campo eléctrico es tangente a las líneas de campo en cada punto.

Las líneas de campo eléctrico son abiertas; salen siempre de las cargas positivas o del infinito y terminan en el infinito o en las cargas negativas.

El número de líneas que salen de una carga positiva o entran en una carga negativa es proporcional a dicha carga.

La densidad de líneas de campo en un punto es proporcional al valor del campo eléctrico en dicho punto.

Las líneas de campo no pueden cortarse. De lo contrario en el punto de corte existirían dos vectores campos eléctricos distintos.

A grandes distancias de un sistema de cargas, las líneas están igualmente espaciadas y son radiales, comportándose el sistema como una carga puntual.

GAUSS

En física la ley de Gauss, también conocida como teorema de Gauss, establece que el flujo de ciertos campos a través de una superficie cerrada es proporcional a la magnitud de las fuentes de dicho campo que hay en el interior de dicha superficie. Dichos campos son aquellos cuya intensidad decrece como la distancia a la fuente al cuadrado. La constante de proporcionalidad depende del sistema de unidades empleado.

Se aplica al campo electrostático y al gravitatorio. Sus fuentes son la carga eléctrica y la masa, respectivamente. También puede aplicarse al campo magnetostático.

La ley fue formulada por Carl Friedrich Gauss en 1835, pero no fue publicado hasta 1867.1 Es una de los cuatro ecuaciones de Maxwell, que forman la base de electrodinámica clásica (las otras tres son la ley de Gauss para el magnetismo, la ley de Faraday de la inducción y la ley de Ampère con la corrección

...

Descargar como (para miembros actualizados)  txt (12.6 Kb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com