ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Factor común por agrupación de términos

irene741Trabajo27 de Septiembre de 2011

578 Palabras (3 Páginas)1.003 Visitas

Página 1 de 3

Caso II - Factor común por agrupación de términos

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos.

Un ejemplo numérico puede ser:

entonces puedes agruparlos de la siguiente manera:

Aplicamos el caso I (Factor común)

Caso IV - Diferencia de cuadrados

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.

Caso III - Trinomio Cuadrado Perfecto

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.

Ejemplo 4:

Organizando los términos tenemos

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

aso VI - Trinomio de la forma x2 + bx + c

Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio.

Ejemplo:

Ejemplo:

Caso VIII - Trinomio de la forma ax2 + bx + c

En este caso se tienen 3 términos: El primer término tiene un coeficiente distinto de uno, la letra del segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, o sea sin una parte literal, así:

Para factorizar una expresión de esta forma, se multiplica el término independiente por el coeficiente del primer término(4x2) :

Luego debemos encontrar dos números que multiplicados entre sí den como resultado el término independiente y que su suma sea igual al coeficiente del término x :

Después procedemos a colocar de forma completa el término x2 sin ser elevado al cuadrado en paréntesis, además colocamos los 2 términos descubiertos anteriormente :

Para terminar dividimos estos términos por el coeficiente del término x2 :

:

Queda así terminada la factorización :

:

En una diferencia de cubos perfectos.

Procedimiento para factorizar

1) Se extrae la raíz cúbica de cada término del binomio.

2) Se forma un producto de dos factores.

3) Los factores binomios son la diferencia de las raíces cúbicas de los términos del binomio.

4) Los factores trinomios se determinan así:

El cuadrado de la primera raíz más el producto de estas raíces más el cuadrado de la segunda raíz.

Ejemplo 1: Factorizar y3 - 27

La raíz cúbica de : y3 es y

La raíz cúbica de : 27 es 3

Según procedimiento y3 - 27

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com