Funcion Lineal
alexislocanto8 de Mayo de 2015
436 Palabras (2 Páginas)158 Visitas
Función lineal
Para otros usos de este término, véase Función lineal (desambiguación).
No debe confundirse con Aplicación lineal.
Función lineal.
En geometría y el álgebra elemental, una función lineal es una función polinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:
f(x) = mx + b
donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Si se modifica m entonces se modifica la inclinación de la recta, y si se modifica b, entonces la línea se desplazará hacia arriba o hacia abajo.
Algunos autores llaman función lineal a aquella con b = 0 de la forma:
f(x) = mx
mientras que llaman función afín a la que tiene la forma:
f(x) = mx + b
cuando b es distinto de cero, dado que la primera (b = 0) es un ejemplo también de transformación lineal, en el contexto de álgebra lineal.
Índice [ocultar]
1 Ejemplo
2 Funciones lineales de varias variables
3 Véase también
4 Referencias bibliográficas
5 Enlaces externos
Ejemplo[editar]
Dos rectas y sus ecuaciones en coordenadas cartesianas.
Una función lineal de una única variable dependiente x es de la forma:
y = mx + b
que se conoce como ecuación de la recta en el plano x, y.
En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:
y = 0,5x + 2
en esta recta el parámetro m es igual a 1/2 (correspondiente al valor de la pendiente de la recta), es decir, cuando aumentamos x en una unidad entonces y aumenta en 1/2 unidad, el valor de b es 2, luego la recta corta el eje y en el punto y = 2.
En la ecuación:
y = –x + 5
la pendiente de la recta es el parámetro m = –1, es decir, cuando el valor de x aumenta en una unidad, el valor de y disminuye en una unidad; el corte con el eje y es en y = 5, dado que el valor de b = 5.
En una recta el valor de m se corresponde al ángulo θ de inclinación de la recta con el eje de las x a través de la expresión:
m = tanθ
Funciones lineales de varias variables[editar]
Las funciones lineales de varias variables admiten también interpretaciones geométricas. Así una función lineal de dos variables de la forma
f(x, y) = a1x + a2y
representa un plano y una función
f(x1, x2, ..., xn) = a1x1 + a2x2 + ... + anxn
representa una hipersuperficie plana de dimensión n y pasa por el origen de coordenadas en un espacio (n + 1)-dimensional.
...