ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Guia Matematicas

CarolinaBermea4 de Noviembre de 2014

3.776 Palabras (16 Páginas)390 Visitas

Página 1 de 16

1. PENSAMIENTO MATEMATICO

1.1 JERARQUIA DE OPERACIONES BASICAS

1.1.1.1. OPERACIONES COMBINADAS DE SUMA, RESTA, MULTIPLICACION Y DIVISION CON NUMEROS ENTEROS

Sumas, restas, multiplicaciones y divisiones combinadas con números enteros

Para realizar operaciones combinadas operamos de izquierda a derecha según este orden:

1º- Interior de paréntesis y corchetes

(-4) + (-3) . [ (+4) + (-8) ] + (-1) = (-4) + (-3) . (-4) + (-1)

2º- Los productos y las divisiones

(-4) + (-3) . (-4) + (-1) = (-4) + (+12) + (-1)

3º- Las sumas y las restas

(-4) + (+12) + (-1) = -4 + 12 -1 = +7

Sumas y restas combinadas con números enteros

Para realizar sumas y restas combinadas, primero suprimimos los paréntesis innecesarios de la siguiente manera:

Si no hay signo delante del paréntesis se deja igual.

Si delante del paréntesis está el signo + se deja el mismo signo.

Si delante del paréntesis está el signo – se cambia el signo por su opuesto.

Y finalmente se realiza la operación en orden de izquierda a derecha.

(+3) + (-9) + (-5) – (-7)+ (+6) = +3 -9 – 5 + 7 + 6 = +2

1.1.1.2 PROBLEMAS CON SUMA, RESTA, MULTIPLICACION Y DIVISION CON NUMEROS DECIMALES Y FRACCIONES.

Sumas, restas, multiplicaciones y divisiones combinadas con fracciones

1.- Se resuelven las operaciones dentro de los paréntesis

2.- multiplicaciones y divisiones de izquierda a derecha

3.- sumas y restas de izquierda a derecha

Observamos con cuidado la operación. Detectamos que no hay números mixtos ni decimales, por lo que pasamos al segundo paso: vemos allí una potencia de exponente 2. Será lo primero que hemos de resolver

La fracción afectada por exponente 2, se ha convertido ahora en 1/9. Tenemos ahora allí, dentro de los paréntesis curvos, una multiplicación de un lado y una división del otro, por lo que nuestra siguiente tarea es resolver estas operaciones.

Han quedado resueltas esas operaciones. Como vemos la “gran” operación en este caso es una división. Habrá que trabajar para definir el dividendo (la suma que está dentro del primer paréntesis) y como último paso, realizar esadivisión de fracciones.

El resultado del primer paréntesis ha sido una fracción que puede convertirse en un número entero: 2. Por tanto nos queda la división indicada. El último paso es realizarla.

He aquí el resultado final de nuestra operación combinada con fracciones. Cabe aclarar que no siempre el resultado será un entero: la mayoría de las veces será una fracción, que conviene simplificar y reducir al máximo.

1.1.2 RELACIONES DE PROPORCIONALIDAD

1.1.2.1 PROBLEMAS CON RAZONES

SE LE LLAMA RAZON A LA COMPARACION DE DOS CANTIDADES: ESTA COMPARACION PUEDE HACERSE MEDIANTE UNA DIFERENCIA, EN TAL CASO SE LLAMA “RAZON ARITMETICA” (R A), O MEDIANTE UNA DIVISION, EN TAL CASO SE LLAMA “RAZON GEOMETRICA” (R G),

(RA)=A-B=D DONDE A ES ANTECEDENTE Y B CONSECUENTE

(RG)= A/B=K

1a. Jennifer dibujó 1 corazon, 112 estrellas, y 37 círculos. ¿Cuál es la razón entre el número de círculos y el número de corazones? 37:1

2a. Un grupo de niños en edad preescolar tiene 14 varones y 133 hembras. ¿Cuál es la razón entre la cantidad de hembras y la cantidad de varones? 19:2

3a. Lorena dibujó 73 corazones y 43 círculos. ¿Cuál es la razón entre el número de corazones y el número de círculos? 43:73

4a. Jonathan dibujó 41 corazones, 3 estrellas, y 17 círculos. ¿Cuál es la razón entre el número de círculos y el número de corazones? 17:41

1.1.2.2 PROBLEMAS CON PROPORCIONES

SE LE LLAMA PROPORCION A LA IGUALDAD DE RAZONES, SIENDO LA CARACTERISTICA PRINCIPAL DE ESTAS RAZONES IGUALES. LAS PROPORCIONES PUEDEN SER ARITMETICAS O GEOMETRICAS

RAZON ARITMETICA

(RA): A-B=K

C-D=K

(PA): A-B=C-D ó TAMBIEN A.B: C.D “SE LEE A ES A B, COMO C ES A D”

RAZON GEOMETRICA

(RG): A/B=K

C/D=K

(PG): A/B=C/D ó TAMBIEN A:B::C:D “SE LEE A ES A B, COMO C ES A D”

1.2 RAZONAMIENTO ALGEBRAICO

1.2.1 EXPRESIONES ALGEBRAICAS

1.2.1.1 OPERACIONES CON MONOMIOS

Un monomio es una expresión algebraica de la forma , donde a es el coeficiente, el resto la parte literal.

Operaciones con monomios.

Suma de monomios.Para sumar dos monomios con la misma parte literal, se mantiene ésta y se suman los coeficientes.

Resta de monomios.Para restar dos monomios con identica parte literal, mantenemos la parte literal y restamos los coeficientes.

Producto de monomios.Se multiplican los coeficientes y se suman los exponentes de los elementos con la misma base.

Cociente de monomios.Se dividen los coeficientes y se restan los exponentes de los elementos de la misma base.

1.2.1.2 OPERACIONES CON POLINOMIOS

Suma de polinomios

Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.

P(x) = 2x3 + 5x − 3

Q(x) = 4x − 3x2 + 2x3

1.Ordenamos los polinomios, si no lo están.

Q(x) = 2x3 − 3x2 + 4x

P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)

2.Agrupamos los monomios del mismo grado.

P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3

3.Sumamos los monomios semejantes.

P(x) + Q(x) = 4x3− 3x2 + 9x − 3

Resta de polinomios

La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.

P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)

P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x

P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3

P(x) − Q(x) = 3x2 + x − 3

Multiplicación de polinomios

Multiplicación de un número por un polinomio Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.

3 • ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6

Multiplicación de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.

3 x2 • (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2

Multiplicación de polinomios

P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x

Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.

P(x) • Q(x) = (2x2 − 3) • (2x3 − 3x2 + 4x) =

= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =

Se suman los monomios del mismo grado.

= 4x5 − 6x4 + 2x3 + 9x2 − 12x

Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.

1.2.2 PRODUCTOS NOTABLES

1.2.2.1 BINOMIO AL CUADRADO:(A+B)AL CUADRADO

El cuadrado de la suma de dos números es igual al cuadrado del primer número, más el doble del producto del primer número multiplicado por el segundo, más el cuadrado del segundo.

Consideremos que . Tendremos que . Por tanto

Es decir

EJEMPLO:

Desarrollar

SOLUCIÓN: Tendremos que el cuadrado del primer número:

El doble del producto del primer número por el segundo:

El cuadrado del segundo número:

Así pues

EJEMPLO:

Al desarrollar

SOLUCIÓN: Tendremos que el cuadrado del primer número:

El doble del producto del primer número por el segundo:

El cuadrado del segundo número:

Así pues

1.2.2.2 BINOMIOS CONJUGADOS (a+b) (a-b)

El producto de dos números por su diferencia es igual al cuadrado del primer número menos el cuadrado del segundo número.

Consideremos el producto:

Es decir

EJEMPLO:

Multiplicar

SOLUCIÓN: Cuadrado del primer número:

Cuadrado del segundo número:

Así pues,

EJEMPLO:

Multiplicar

SOLUCIÓN: Cuadrado del primer número:

Cuadrado del segundo número:

Así pues,

1.2.2.3BINOMIOS con termino común: (a+b) (a+c)

Binomio con un término común

El producto de dos binomios del tipo es igual al cuadrado del primer término, más el producto de la suma de los dos segundos términos por el primer término, más el producto de los segundos términos.

Se trata de demostrar que .

Tendremos que:

Es decir , tal como queríamos demostrar.

EJEMPLO:

Comprobar que .

SOLUCIÓN: Tendremos .

EJEMPLO:

Comprobar que

SOLUCIÓN: Tendremos

1.2.2.4 BINOMIOS AL CUBO: (A+B)AL CUBO

El cubo de la suma de dos números es igual al cubo del primer número, más el triple del producto del cuadrado del primer número por el segundo, más el triple del producto del primer número por el cuadrado del segundo, más el cubo del segundo.

...

Descargar como (para miembros actualizados) txt (22 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com