Historia De Las Matematicas
urarlin12129513 de Enero de 2015
4.612 Palabras (19 Páginas)241 Visitas
Historia de las matemáticas
La historia de las matemáticas es el área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos enmatemáticas, de los métodos matemáticos, de la evolución de sus conceptos y también en cierto grado, de los matemáticos involucrados. El surgimiento de la matemática en la historia humana está estrechamente relacionado con el desarrollo del concepto de número, proceso que ocurrió de manera muy gradual en las comunidades humanas primitivas. Aunque disponían de una cierta capacidad de estimar tamaños y magnitudes, no poseían inicialmente una noción de número. Así, los números más allá de dos o tres, no tenían nombre, de modo que utilizaban alguna expresión equivalente a "muchos" para referirse a un conjunto mayor.
El siguiente paso en este desarrollo es la aparición de algo cercano a un concepto de número, aunque muy incipiente, todavía no como entidad abstracta, sino como propiedad o atributo de un conjunto concreto.1 Más adelante, el avance en la complejidad de la estructura social y sus relaciones se fue reflejando en el desarrollo de la matemática. Los problemas a resolver se hicieron más difíciles y ya no bastaba, como en las comunidades primitivas, con solo contar cosas y comunicar a otros la cardinalidad del conjunto contado, sino que llegó a ser crucial contar conjuntos cada vez mayores, cuantificar el tiempo, operar con fechas, posibilitar el cálculo de equivalencias para el trueque. Es el momento del surgimiento de los nombres y símbolos numéricos.
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz solo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son la tablilla de barro Plimpton 322 (c. 1900 a. C.), el papiro de Moscú (c. 1850 a. C.), el papiro de Rhind (c. 1650 a. C.) y los textos védicos Shulba Sutras (c. 800 a. C.). En todos estos textos se menciona el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de laaritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir laTierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.
Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.2 La matemática en el islam medieval, a su vez, desarrolló y extendió las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media. Desde el renacimiento italiano, en el siglo XV, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, han ido creciendo exponencialmente hasta el día de hoy.
Prehistoria
Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en la Cueva de Blombos en Sudáfrica de aproximadamente 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrones geométricos.3 También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a. C.,
Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales.6 7 El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida4 de una secuencia de números primos y de la multiplicación por duplicación.
Primeras civilizaciones
En el periodo predinástico de Egipto del V milenio a. C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del III milenio a. C., incorporan ideas geométricas tales como círculos, elipses yternas pitagóricas en su diseño.
Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeraciónde base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.
Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 − 1046 a. C.) y consisten en números marcados en un caparazón de tortuga.11 Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C.,
Mesopotamia
Las matemáticas babilónicas hacen referencia a las matemáticas desarrolladas en Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.
En contraste con la escasez de fuentes en las matemáticas egipcias, el conocimiento sobre las matemáticas en Babilonia se deriva de más de 400 tablillas de arcilla desveladas desde 1850. Labradas en escritura cuneiforme, fueron grabadas mientras la arcilla estaba húmeda y cocidas posteriormente en un horno o secadas al sol. Algunas de ellas parecen ser tareas graduadas.
Las evidencias más tempranas de matemáticas escritas datan de los antiguos sumerios, que constituyeron la civilización primigenia en Mesopotamia. Los sumerios desarrollaron un sistema complejo de metrología desde el 3000 a. C. Desde alrededor del 2500 a. C. en adelante, los sumerios escribieron tablas de multiplicar en tablillas de arcilla y trataron ejercicios geométricos y problemas de división. Las señales más tempranas de los numerales babilónicos también datan de ese periodo.12
La mayoría de las tabletas de arcilla recuperadas datan del 1800 al 1600 a. C. y abarcan tópicos que incluyen fracciones, álgebra, ecuaciones cuadráticas y cúbicas y el cálculo de primos gemelos regulares recíprocos (véase Plimpton 322).13 Las tablillas también incluyen tablas de multiplicar y métodos para resolver ecuaciones lineales y ecuaciones cuadráticas. La tablilla babilónica YBC 7289 da una aproximación de √2 con una exactitud de cinco posiciones decimales. también la matemática abarca muchas ramas empezando por la clasificación delos números Las matemáticas babilónicas fueron escritas usando un sistema de numeración sexagesimal (base 60). De ahí se deriva la división de un minuto en 60 segundos y de una hora en 60 minutos, así como la de un círculo en 360 (60 × 6) grados y las subdivisiones sexagesimales de esta unidad de medida de ángulos en minutos y segundos. Los avances babilónicos en matemáticas fueron facilitados por el hecho de que el número 60 tiene muchos divisores. También, a diferencia de los egipcios, griegos y romanos, los babilonios tenían un verdadero sistema de numeración posicional, donde los dígitos escritos a la izquierda representaban valores de orden superior, como en nuestro actual sistema decimal de numeración. Carecían, sin embargo, de un equivalente a la coma decimal y así, el verdadero valor de un símbolo debía deducirse del contexto.
Egipto
Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde
...