ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Np 2 Fisica Aplicada So 4


Enviado por   •  25 de Septiembre de 2013  •  2.950 Palabras (12 Páginas)  •  305 Visitas

Página 1 de 12

CONOCIMIENTOS:

Medición de la relación entre masa y fuerza gravitatoria:

La gravedad es una de las cuatro fuerzas o interacciones fundamentales observadas hasta el momento en la naturaleza.

La gravedad es la responsable de la caída de los cuerpos en la Tierra y de los movimientos a gran escala que se observan en el Universo: que la Luna orbite alrededor de la Tierra, que los planetas orbiten alrededor del Sol y que las galaxias estén rotando en torno a un centro.

Hasta mediados del siglo XVII los astrónomos habían logrado describir con mucho detalle las trayectorias de la Tierra, la Luna y los planetas. Pero nadie había conseguido averiguar la causa de estos desplazamientos tan precisos.

Fue Isaac Newton el que descubrió que "todo sucede como si la materia atrajera a la materia". Pero hizo mucho más: descubrió que existe una relación cuantitativa para la fuerza de atracción entre dos objetos con masa.

De sus reflexiones y cálculos, dedujo que todo objeto en el universo que posea masa ejerce una atracción gravitatoria sobre cualquier otro objeto con masa, aún si están separados por una gran distancia.

Isaac Newton presentó la ley de Gravitación Universal en su libro publicado en 1687, "Philosophiae Naturalis Principia Mathematica". De acuerdo con esta ley de Newton, cuanta más masa posean los objetos, mayor será la fuerza de atracción, y en cuanto más cerca se encuentren entre sí, mayor será esa fuerza.

Cada cuerpo ejerce una fuerza sobre el otro, las dos fuerzas son iguales en módulo y dirección, pero contrarias en sentido; al estar aplicadas en diferentes cuerpos no se anulan.

Considerando dos cuerpos como la Tierra y la Luna, la ley de gravitación se expresa en forma de una ecuación que cuantifica "la fuerza de gravedad que ejerce la Tierra con masa mT sobre la Luna con masa mL, como el producto de ambas masas, dividido por el cuadrado de la distancias desde el centro de la Tierra hasta el centro de la Luna.

La fuerza de gravedad de la Tierra causa una aceleración de la Luna hacia la Tierra. La fuerza de gravedad de la Luna causa una aceleración de la Tierra hacia la Luna. Ambas fuerzas tienen la misma intensidad.

Lo mismo sucede, guardando las proporciones, con la Tierra y la manzana que newton utilizó para descubrir la fuerza gravitatoria..

Todas las partículas materiales y todos los cuerpos se atraen mutuamente por el simple hecho de tener masa, en proporción directa a sus masas. La gravedad tiene un alcance teórico infinito; pero, la fuerza es mayor si los objetos están próximos, y mientras se van alejando dicha fuerza pierde intensidad en proporción al cuadrado de la distancia que separa a los cuerpos. Por ejemplo, si se aleja un objeto de otro al triple de distancia, entonces la fuerza de gravedad se reduce a la novena parte.

En la fórmula de la gravitación es muy importante la introducción de un valor que sirve para obtener el valor exacto de las fuerzas de atracción gravitacional. Es la famosa "constante G", la constante de gravitación universal. Newton no conocía la causa de esta constante y tampoco sul valor exacto. Sólo pudo indicar que se trataba de una constante universal y que su valor era un número bastante pequeño.

Sólo mucho tiempo después se desarrollaron las técnicas necesarias para mejorar el cálculo de su valor. Aún hoy es una de las constantes universales conocidas con menor precisión.

Isaac Newton fue el primero en explicar que la fuerza que hace que los objetos caigan con aceleración constante en la Tierra (gravedad terrestre), es la misma que mantiene en movimiento los planetas y las estrellas.

La fuerza de gravedad siempre es atractiva, nunca es repulsiva y tiene alcance infinito. Por muy alejados que estén entre sí dos cuerpos, siguen experimentando esta fuerza, aunque más débil a medida que aumenta la distancia.

La fuerza de gravedad siempre produce atracción entre los cuerpos, cualquiera que sea su composición. La fuerza resultante se produce atrayéndose el centro de gravedad de un objeto con el centro de gravedad del otro.

La fuerza gravitatoria es universal y todas las partículas materiales están sometidas a ella, sin excepción. Sin embargo, en el interior de los átomos, la fuerza de gravedad no juega un papel importante, debido a la pequeñísima magnitud de las masas de las partículas elementales.

Utilizando la fórmula matemática de la Gravitación Universal, podemos calcular la fuerza de atracción entre la Tierra y el cuerpo de un astronauta que esté en una órbita ecuatorial a 500 km de la superficie y que tenga una masa de 90 kg incluido su traje espacial.

La masa de la Tierra es 5,974 × 1024 kg.

La distancia entre el centro de gravedad de la Tierra (centro de la tierra) y la superficie ecuatorial es de 6.378,28 km. Si agregamos los 500 km de altura, se obtiene una distancia de 6.878.280 metros entre ambos centros de gravedad: el de la Tierra y el del astronauta.

G es la constante de gravitación universal y vale aproximadamente6,674 * 10 -11

Haciendo los cálculos, se obtiene que la fuerza gravitacional de cada uno de estos dos cuerpos (la Tierra y el astronauta) es de 750 Newton, equivalentes aproximadamente a 77 Kg de atracción mutua,

Newton explico cómo se comportan los cuerpos ante la gravedad. Einstein propuso un modelo teórico para explicar el origen de la gravedad.

La teoría de la relatividad general, hace un análisis diferente de la interacción gravitatoria. De acuerdo con esta teoría, la gravedad puede entenderse como un efecto geométrico de la materia sobre el espacio-tiempo.

Cuando una cierta cantidad de materia ocupa una región del espacio-tiempo, ésta provoca que el espacio-tiempo se deforme.

Visto así, la fuerza gravitatoria no es una misteriosa "fuerza que atrae", sino el efecto producido por la deformación del espacio-tiempo, sobre el movimiento de los cuerpos.

Dado que todos los objetos (según esta teoría) se mueven en el espacio-tiempo, al deformarse este espacio, parte de esa velocidad será desviada produciéndose aceleración en una dirección, que es la fuerza de gravedad.

¿Cuál es la causa de la gravedad? ¿Por qué existe la gravedad?

Quien responda satisfactoriamente a esta pregunta se ganaría el Premio Nobel de Física, porque ésta es una de las interrogantes más interesantes que tiene la ciencia moderna. Hasta ahora, nadie ha dado con la respuesta.

En términos generales lo que sabemos de la gravedad, desde Isaac Newton y Albert Einstein hasta ahora es que “todo sucede como si la materia atrajera a la materia”. Newton ideó una fórmula matemática que funciona con precisión y que, desde entonces, ha permitido calcular las trayectorias de los astros y de las naves espaciales. Eisntein propuso la teoría de la deformación del espacio-tiempo. Pero seguimos sin conocer por qué la materia produce esta interacción que llamamos gravedad.

En los ambientes matemáticos y científicos de vanguardia se habla mucho de los gravitones, partículas elementales que emanarían de los campos gravitatorios, y de las ondas gravitatorias.

Como paso previo a la búsqueda directa de los gravitones, en la Universidad de Wisconsin y en el Observatorio de Ondas Gravitatorias del Interferómetro Láser (LIGO) se están realizando investigaciones con el fin de encontrar pruebas de la existencia de ondas de gravedad, ondas gravitatorias.

En la mecánica clásica se puede medir una onda y actualmente se admite que las ondas están compuestas de partículas. De modo que si se consigue detectar ondas gravitatorias, se tendría una base para sugerir que los gravitones existen de verdad. Esto sería una noticia optimista que animaría a continuar buscándolos.

Actualmente es posible detectar partículas casi sin masa, como los fotones. Pero, según los modelos matemáticos, los gravitones deberían interactuar muy débilmente con la materia. Esta tan débil interacción sería la causa de que, hasta ahora, los gravitones sean indetectables. Simplemente no se sabe cómo detectarlos.

Por ahora, todos los esfuerzos están centrados en confirmar la existencia del bosón de Higgs, que es un primo lejano del gravitón y que se supone responsable de dar masa a la materia. Descubrir el bosón de Higgs, sería un gran estímulo para continuar con la búsqueda de los gravitones.

A veces se leen críticas a las cuantiosas inversiones que se realizan en los grandes Aceleradores de Partículas, como el LHC y el Fermilab. Hay que pensar que en estos centros se investiga "ciencia básica", conocimientos que son los fundamentos de los grandes avances tecnológicos que influirán decisivamente en todos los aspectos de la vida humana. Descubrir la causa de la gravedad tendría repercusiones inimaginables.

Ley de elasticidad de Hooke

En física, la ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos del estiramiento longitudinal, establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada :

siendo el alargamiento, la longitud original, : módulo de Young, la sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite elástico.

Esta ley recibe su nombre de Robert Hooke, físico británico contemporáneo de Isaac Newton, y contribuyente prolífico de la arquitectura. Esta ley comprende numerosas disciplinas, siendo utilizada n ingeniería y construcción, asi como en la ciencia de los materiales. Ante el temor de que alguien se apoderara de su descubrimiento, Hooke lo publicó en forma de un famosoanagrama, ceiiinosssttuv, revelando su contenido un par de años más tarde. El anagrama significa Ut tensio sic vis ("como la extensión, así la fuerza").

Ley de Hooke para los resortes

La ley de Hooke describe cuanto se alargará un resorte bajo una cierta fuerza.

La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación del muelle o resorte, donde se relaciona la fuerza ejercida en el resorte con la elongación o alargamiento producido:

donde se llama constante elástica del resorte y es su elongación o variación que experimenta su longitud.

La energía de deformación o energía potencial elástica asociada al estiramiento del resorte viene dada por la siguiente ecuación:

Es importante notar que la antes definida depende de la longitud del muelle y de su constitución. Definiremos ahora una constante intrínseca del resorte independiente de la longitud de este y estableceremos así la ley diferencial constitutiva de un muelle. Multiplicando por la longitud total, y llamando al producto o intrínseca, se tiene:

Llamaremos a la tensión en una sección del muelle situada una distancia x de uno de sus extremos que tomamos como origen de coordenadas, a la constante de un pequeño trozo de muelle de longitud a la misma distancia y al alargamiento de ese pequeño trozo en virtud de la aplicación de la fuerza . Por la ley del muelle completo:

Tomando el límite:

que por el principio de superposición resulta:

Que es la ecuación diferencial del muelle. Si se integra para todo , se obtiene como ecuación de onda unidimensional que describe los fenómenos ondulatorios (Ver: Muelle elástico). La velocidad de propagación de las vibraciones en un resorte se calcula como:

Ley de Hooke en sólidos elásticos:

En la mecánica de sólidos deformables elásticos la distribución de tensiones es mucho más complicada que en un resorte o una barra estirada sólo según su eje. La deformación en el caso más general necesita ser descrita mediante un tensor de deformaciones mientras que los esfuerzos internos en el material necesitan ser representados por un tensor de tensiones. Estos dos tensores están relacionados por ecuaciones lineales conocidas por ecuaciones de Hooke generalizadas o ecuaciones de Lamé-Hooke, que son las ecuaciones constitutivas que caracterizan el comportamiento de un sólido elástico lineal. Estas ecuaciones tienen la forma general:

Gran parte de las estructuras de ingeniería son diseñadas para sufrir deformaciones pequeñas,se involucran sólo en la recta del diagrama de esfuerzo y deformación.

De tal forma que la deformación es una cantidad adimensional, el módulo se expresa en las mismas unidades que el esfuerzo (unidades pa, psi y ksi). El máximo valor del esfuerzo para el que puede emplearse la ley de Hooke en un material es conocido como límite de proporcionalidad de un material. En este caso, los materiales dúctiles que poseen un punto de cedencia definido; en ciertos materiales no puede definirse la proporcionalidad de cedencia fácilmente, ya que es difícil determinar con precisión el valor del esfuerzo para el que la similitud entre y deje de ser lineal. Al utilizar la ley de Hooke en valores mayores que el límite de proporcionalidad no conducirá a ningún error significativo. En resistencia de materiales se involucra en las propiedades físicas de materiales, como resistencia, ductibilidad y resistencia de corrosión; que pueden afectarse debido a la aleación, el tratamiento térmico y el proceso de manofactura.

PÉNDULO SIMPLE:

Es un modelo teórico que consiste en la implementación de un objeto de masa m, unido a un hilo de longitud l y cuya masa sea insignificante con respecto al objeto que está colgado de uno de sus extremos. En sistemas esféricos, cuando el radio de la esfera es despreciable con respecto a l y que puede considerarse, por tanto, la esfera como un punto material, se tiene el caso ideal del péndulo simple, cuyo periodo se convierte en:

Un péndulo simple es un punto pesante, suspendido en un punto fijo por un hilo inextensible, rígido y sin peso. Es, por consiguiente, imposible de realizarlo, pero casi se consigue con un cuerpo pesante de pequeñas dimensiones suspendido en un hilo fino.

Algunas condiciones son necesarias que se evalúen, para poder justificar las características del péndulo simple.

Variaciones del periodo con la amplitud: El periodo de un péndulo varía con respecto a la amplitud, cuando se trabaja con ángulos muy pequeños, el periodo varía muy poco, esto físicamente es conocido como la ley del isocronismo.

Variaciones del periodo con la masa del péndulo: Utilizando péndulos de la misma longitud y de diferentes masas en un mismo lugar se demuestra que el periodo de un péndulo simple es independiente de su masa, igual ocurre con la naturaleza de la masa que conforma al péndulo.

Variaciones del periodo con la longitud del péndulo: Si se miden los periodos de un mismo péndulo simple, haciendo variar únicamente su longitud, se comprueba que, el periodo de un péndulo simple es proporcional a la raíz cuadrada de su longitud.

Variaciones del periodo con la aceleración de la gravedad: El estudio matemático indica que el periodo varía con razón inversa de la raíz cuadrada de la gravedad.

El movimiento oscilatorio resultante queda caracterizado por los siguientes parámetros:

Oscilación completa o ciclo: es el desplazamiento de la esfera desde uno de sus extremos más alejados de la posición de equilibrio hasta su punto simétrico (pasando por la posición de equilibrio) y desde este punto de nuevo hasta la posición inicial, es decir, dos oscilaciones sencillas.

Periodo: es el tiempo empleado por la esfera en realizar un ciclo u oscilación completa.

Frecuencia: es el número de ciclos realizados en la unidad de tiempo.

Amplitud: es el máximo valor de la elongación o distancia hasta el punto de equilibrio, que depende del ángulo entre la vertical y el hilo.

SISTEMA MASA-RESORTE:

Consideremos un sistema Masa-Resorte sobre una mesa horizontal sin fricción. En el Movimiento Armónico Simple la fuerza de restitución del resorte

, donde k es la constante de elasticidad y x la deformación (considerando que el origen de referencia es la posición de equilibrio), es la que mantiene el movimiento oscilatorio de la masa de acuerdo a la ecuación de movimiento que se obtiene a partir de la Segunda Ley de Newton

Consideremos al sistema Masa-Resorte en el que además de la fuerza de restitución del resorte se tiene la presencia de una fuerza Fa(t) que trata de amortiguar el movimiento. El modelo para la fuerza de amortiguamiento, si es debida al movimiento de la masa a través de un medio (por ejemplo el aire), tiene dos características:

1) Siempre se opone al movimiento, lo que significa que está en dirección contraria a la velocidad; y

2) Es directamente proporcional a la magnitud de la velocidad.

La primera característica es general para las fuerzas de amortiguamiento; mientras que la segunda es la característica propia del modelo propuesto, es decir que otros modelos pueden tener otro tipo de dependencia para la fuerza de amortiguamiento. De acuerdo al modelo propuesto, la fuerza de amortiguamiento se puede escribir en la forma:

Donde b es la constante de amortiguamiento.

Entonces la ecuación de movimiento de la masa, de acuerdo con la Segunda Ley de Newton, es:

Donde m es la masa; a es la aceleración; k es la constante de elasticidad; y, x la posición, considerando que la posición de equilibrio es el origen de referencia.

Sea la frecuencia natural, con y el factor de amortiguamiento, entonces la ecuación de movimiento se puede escribir como:

PREGUNTAS GENERADORAS:

1. Cuál es la relación entre masa y fuerza? :

La relación que existe entre masa y fuerza está en el movimiento de los cuerpos, porque si en un cuerpo que se encuentra en reposo o en una velocidad uniforme, no existiera ninguna fuerza, no se produciría ninguna clase de movimiento o cambio de trayectoria del mismo. Además la fuerza es inversamente proporcional a la masa por que a mayor fuerza mayor aceleración y a mayor masa menor aceleración.

2. Todos los cuerpos elásticos cumplen la ley de Hooke?:

Todos los cuerpos elásticos cumplen la ley Hooke, porque se aplica a materiales elásticos que tienen un límite de estiramiento denominado “límite elástico” y según la ley todo cuerpo elástico tiene un límite de elasticidad y se da en caso de estiramiento longitudinal proporcional a la fuerza aplicada sin tener en cuenta que si la fuerza externa es mayor, este cuerpo sufre una deformación proporcional a esta fuerza.

...

Descargar como  txt (18.1 Kb)  
Leer 11 páginas más »
txt