ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Reconocer e identificar los componentes de los encendidos electrónicos Integrales


Enviado por   •  21 de Abril de 2016  •  Trabajos  •  4.837 Palabras (20 Páginas)  •  446 Visitas

Página 1 de 20

 Reconocer e identificar los componentes de los encendidos electrónicos Integrales

Principios de funcionamiento


La señal entregada por el sensor de vacío se utiliza para el encendido como señal de carga del motor. Mediante esta señal y la de rpm del motor se establece un campo característico de ángulo de encendido tridimensional que permite en cada punto de velocidad de giro y de carga (plano horizontal) programar el ángulo de encendido más favorable para los gases de escape y el consumo de combustible (en el plano vertical). En el conjunto de la cartografía de encendido existen, según las necesidades, aproximadamente de 1000 a 4000 ángulos de encendido individuales.
 Con la mariposa de gases cerrada, se elige la curva característica especial ralentí/empuje. Para velocidades de giro del motor inferior a la de ralentí nominal, se puede ajustar el ángulo de encendido en sentido de "avance", para lograr una estabilización de marcha en ralentí mediante una elevación en el par motor. En marcha por inercia (cuesta abajo) están programados ángulos de encendido adecuados a los gases de escape y comportamiento de marcha. A plena carga, se elige la línea de plena carga. Aquí, el mejor valor de encendido se programa teniendo en cuente el límite de detonación. Para el proceso de arranque se pueden programar, en determinados sistemas, un desarrollo del ángulo de encendido en función de la velocidad de giro y la temperatura del motor, con independencia del campo característico del ángulo de encendido. De este modo se puede lograr un mayor par motor en el arranque. La regulación electrónica de encendido puede ir integrada junto a la gestión de inyección de combustible (como se ve en el esquema inferior) formando un mismo conjunto como ocurre en el sistema de inyección electrónica de gasolina denominado "Motronic". Pero también puede ir la unidad de control de encendido de forma independiente como se ve en el sistema de inyección electrónica denominado "LE2-jetronic".

Tipo de distribución utilizado

Distribuidor de encendido
En los sistemas de encendido electrónico integral el distribuidor suprime los reguladores mecánicos de avance al encendido como era la cápsula de vació. El distribuidor en este caso se limita a distribuir la alta tensión generada en la bobina a cada una de las bujías. En algunos casos como se ve en la figura el distribuidor conserva el "generador de impulsos" de "efecto Hall" cuya señal sirve a la centralita de encendido para detectar en qué posición se encuentra cada uno de los cilindros del motor. Hay casos que el generador de impulsos también se suprime del distribuidor.

 Que pasa con el avance por fuerza centrífuga y el avance por vacío en comparación  con el encendido transistorizado y convencional 

Con la introducción de la electrónica en los sistemas de encendido convencionales (con "ayuda electrónica") solo faltaba dar un paso y sustituir el sistema mecánico que supone el ruptor, siempre sometido a desgastes y a los inconvenientes debidos al rebote de los contactos a altos regímenes del motor que producen fallos de encendido en el motor. En el encendido convencional mediante bobina, el numero de chispas suministradas está limitado a unas 18000 por minuto y en el encendido con ayuda electrónica a unas 21000. A partir de aquí sobreviene el consabido rebote de contactos, por lo que estos tipos de encendido, sobre todo en motores de altas prestaciones están limitados. Además el ruptor esta sometido a desgastes en su accionamiento, como es el desgaste de la fibra sobre la que actúa la leva que abre y cierra los contactos. El desgaste de esta pieza implica un desfase del punto de encendido y variación del ángulo Dwell, lo que obliga a reajustar la separación de los contactos periódicamente, con los consiguientes gastos de mantenimiento que ello supone.

La estructura básica de un sistema de encendido electrónico (figura de la derecha), donde se ve que la corriente que atraviesa el primario de la bobina es controlada por un transistor (T), que a su vez esta controlado por un circuito electrónico, cuyos impulsos de mando determinan la conducción o bloqueo del transistor. Un generador de impulsos (G) es capaz de crear señales eléctricas en función de la velocidad de giro del distribuidor que son enviadas al formador de impulsos, donde debidamente conformadas sirven para la señal de mando del transistor de conmutación. El funcionamiento de este circuito consiste en poner la base de transistor de conmutación a masa por medio del circuito electrónico que lo acompaña, entonces el transistor conduce, pasando la corriente del primario de la bobina por la unión emisor-colector del mismo transistor. En el instante en el que uno de los cilindros del motor tenga que recibir la chispa de alta tensión, el generador G crea un impulso de tensión que es enviado al circuito electrónico, el cual lo aplica a la base del transistor, cortando la corriente del primario de la bobina y se genera así en el secundario de la bobina la alta tensión que hace saltar la chispa en la bujía. Pasado este instante, la base del transistor es puesta nuevamente a masa por lo que se repite el ciclo.

Quien controla el tiempo de la chispa de la bobina en el encendido integral 

Un calculador electrónico recoge informaciones de régimen y carga del motor de combustión y genera el correspondiente avance al encendido que, en cualquier caso, será el más adecuado. Este mismo calculador trata igualmente las señales de mando para cortar o dar paso a la corriente primaria en la bobina de encendido, determinando el instante en que debe saltar la chispa en la bujía que corresponda, a la que se hace llegar por medio de un distribuidor convencional.

Clases de generador de impulso utilizado en este tipo de encendido

Un generador de impulsos del tipo "inductivo",
Esta constituido por una corona dentada que va acoplada al volante de inercia del motor y un captador magnético frente a ella. El captador esta formado por un imán permanente, alrededor esta enrollada una bobina donde se induce una tensión cada vez que pasa un diente de la corona dentada frente a el. Como resultado se detecta la velocidad de rotación del motor. La corona dentada dispone de un diente, y su correspondiente hueco, más ancho que los demás, situado 90º antes de cada posición pms. Cuando pasa este diente frente al captador la tensión que se induce es mayor, lo que indica a la centralita electrónica que el pistón llegara al pms 90º de giro después. 

 Para qué sirve el captador de régimen y posición 

Es un imán permanente arrollado por una bobina que recoge las tenciones inducidas producidas por los dientes de la corona y la envía al calculador.

El sensor empleado para detectar las revoluciones por minuto y el punto muerto superior del motor es del tipo inductivo, funciona mediante la variación del campo magnético generada por el paso de los dientes de una rueda dentada, rueda fónica, ubicada en el interior del block y fijada al contrapeso trasero del cigüeñal, por lo tanto el sensor se fija al block y ya no son necesarios los controles y los reglajes del entre hierro y de la posición angular.
Los dientes que pasan delante del sensor, varían el entre hierro entre engranaje y sensor; el flujo disperso, que varía por consiguiente, induce una tensión de corriente alterna cuya amplitud depende de las revoluciones.
La rueda fónica está constituida por 58 dientes más un espacio equivalente al hueco ocupado por dos dientes suprimidos.
La referencia definida por el espacio de los dos dientes que faltan, constituye la base para detectar el punto de sincronismo, PMS.

...

Descargar como (para miembros actualizados)  txt (30.9 Kb)   pdf (512.7 Kb)   docx (219.6 Kb)  
Leer 19 páginas más »
Disponible sólo en Clubensayos.com