ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termodinamica


Enviado por   •  19 de Noviembre de 2013  •  3.611 Palabras (15 Páginas)  •  201 Visitas

Página 1 de 15

SEGUNDA LEY DE LA TERMODINAMICA

La primera ley de la termodinámica es la ley de conservación de la energía generalizada para incluir el calor como una forma de transferencia de energía.

Esta ley sólo afirma que un aumento en algunas de las formas de energía debe estar acompañado por una disminución en alguna otra forma de la misma. La primera ley no produce ninguna restricción sobre los tipos de conversiones de energía que pueden ocurrir. Además no hace distinción entre el trabajo y el calor. De acuerdo con la primera ley, la energía interna de un sistema se puede incrementar ya sea agregando calor o realizando un trabajo sobre el sistema.

Pero existe una diferencia muy importante entre el trabajo y el calor que no se evidencia de la primera ley. Por ejemplo, es posible convertir completamente el trabajo en calor, pero en la práctica, es imposible convertir completamente el calor en trabajo sin modificar los alrededores.

La segunda ley de la termodinámica establece cuales procesos de la naturaleza pueden ocurrir o no. De todos los procesos permitidos por la primera ley, solo ciertos tipos de conversión de energía pueden ocurrir. Los siguientes son algunos procesos compatibles con la primera ley de la termodinámica, pero que se cumplen en un orden gobernado por la segunda ley. 1) Cuando dos objetos que están a diferente temperatura se ponen en contacto térmico entre sí, el calor fluye del objeto más cálido al más frío, pero nunca del más frío al más cálido. 2) La sal se disuelve espontáneamente en el agua, pero la extracción de la sal del agua requiere alguna influencia externa. 3) Cuando se deja caer una pelota de goma al piso, rebota hasta detenerse, pero el proceso inverso nunca ocurre. Todos estos son ejemplos de procesos irreversibles, es decir procesos que ocurren naturalmente en una sola dirección. Ninguno de estos procesos ocurre en el orden temporal opuesto. Si lo hicieran, violarían la segunda ley de la termodinámica. La naturaleza unidireccional de los procesos termodinámicos establece una dirección del tiempo.

La segunda ley de la termodinámica, que se puede enunciar de diferentes formas equivalentes, tiene muchas aplicaciones prácticas. Desde el punto de vista de la ingeniería, tal vez la más importante es en relación con la eficiencia limitada de las máquinas térmicas. Expresada en forma simple, la segunda ley afirma que no es posible construir una máquina capaz de convertir por completo, de manera continua, la energía térmica en otras formas de energía.

MAQUINAS TERMICAS

Una máquina térmica es un dispositivo que convierte energía térmica en otras formas útiles de energía, como la energía eléctrica y/o mecánica. De manera explícita, una máquina térmica es un dispositivo que hace que una sustancia de trabajo recorra un proceso cíclico durante el cual 1) se absorbe calor de una fuente a alta temperatura, 2) la máquina realiza un trabajo y 3) libera calor a una fuente a temperatura más baja.

Por ejemplo, en un motor de gasolina, 1) el combustible que se quema en la cámara de combustión es el depósito de alta temperatura, 2) se realiza trabajo mecánico sobre el pistón y 3) la energía de desecho sale por el tubo de escape.

O en un proceso característico para producir electricidad en una planta de potencia, el carbón o algún otro tipo de combustible se quema y el calor generado se usa para producir vapor de agua. El vapor se dirige hacia las aspas de una turbina, poniéndola a girar. Posteriormente, la energía asociada a dicha rotación se usa para mover un generador eléctrico.

Como se mencionó antes, una máquina térmica transporta alguna sustancia de trabajo a través de un proceso cíclico, definido como aquel en el que la sustancia regresa a su estado inicial. Como ejemplo de un proceso cíclico, considérese la operación de una máquina de vapor en la cual la sustancia de trabajo es el agua. El agua se lleva a través de un ciclo en el que primero se convierte a vapor en una caldera y después de expande contra un pistón. Después que el vapor se condensa con agua fría, se regresa a la caldera y el proceso se repite.

En la operación de cualquier máquina térmica, se extrae una cierta cantidad de calor de una fuente a alta temperatura, se hace algún trabajo mecánico y se libera otra cantidad de calor a una fuente a temperatura más baja. Resulta útil representar en forma esquemática una máquina térmica como se muestra en la figura 1. La máquina, representada por el círculo en el centro del diagrama, absorbe cierta cantidad de calor QC (el subíndice C se refiere a caliente) tomado de la fuente a temperatura más alta. Hace un trabajo W y libera calor QF (el subíndice F se refiere a frío) a la fuente de temperatura más baja. Debido a que la sustancia de trabajo se lleva a través de un ciclo, su energía interna inicial y final es la misma, por lo que la variación de energía interna es cero, es decir ΔU = 0. Entonces, de la primera ley de la termodinámica se tiene que “el trabajo neto W realizado por la máquina es igual al calor neto que fluye hacia la misma”. De la figura 1, el calor neto es Q neto = QC - QF, por lo tanto el trabajo es:

W = QC – QF (1)

donde QC y QF se toman como cantidades positivas. Si la sustancia de trabajo es un gas, el trabajo neto realizado en un proceso cíclico es igual al área encerrada por la curva que representa a tal proceso en el diagrama PV.

Figura 1: Representación esquemática de una máquina térmica

EFICIENCIA TÉRMICA

La eficiencia térmica, e (o simplemente eficiencia), de una máquina térmica se define como la razón entre el trabajo neto realizado y el calor absorbido durante un ciclo, se escribe de la forma:

(2)

Se puede pensar en la eficiencia como la razón de lo que se obtiene (trabajo mecánico) a lo que se paga por (energía). Este resultado muestra que una máquina térmica tiene una eficiencia de 100% (e = 1) sólo si QF = 0, es decir, si no se libera calor a la fuente fría. En otras palabras, una máquina térmica con una eficiencia perfecta deberá convertir toda la energía calórica absorbida QC en trabajo mecánico. La segunda ley de la termodinámica, establece que esto es imposible.

SEGUNDA LEY DE LA TERMODINAMICA.

Existen diferentes formas de enunciar la segunda ley de la termodinámica, pero en su versión más simple, establece que “el calor jamás fluye espontáneamente de un objeto frío a un objeto caliente”.

...

Descargar como (para miembros actualizados)  txt (21.4 Kb)  
Leer 14 páginas más »
Disponible sólo en Clubensayos.com