ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Variacion

isaac9727 de Septiembre de 2014

9.921 Palabras (40 Páginas)188 Visitas

Página 1 de 40

Reflexión de la luz

Óptica

En la Edad Antigua se conocía la propagación rectilínea de la luz, la reflexión y refracción. Dos filósofos y matemáticos griegos escribieron tratados sobre óptica: Empédocles y Euclides.

Ya en la Edad Moderna René Descartes consideraba la luz como una onda de presión transmitida a través de un medio elástico perfecto (el éter) que llenaba el espacio. Atribuyó los diferentes colores a movimientos rotatorios de diferentes velocidades de las partículas en el medio.

La ley de la refracción fue descubierta experimentalmente en 1621 por Willebrord Snell. En 1657 Pierre de Fermat anunció el principio del tiempo mínimo y a partir de él dedujo la ley de la refracción.

Ley de Snell

En la refracción el rayo de luz que se atraviesa de un medio transparente a otro, se denomina rayo incidente; el rayo de luz que se desvía al ingresar al segundo medio transparente se denomina rayo refractado; el ángulo en que el rayo incidente, al ingresar al segundo medio, forma con la perpendicular al mismo, se denomina ángulo de incidencia; el ángulo que el rayo incidente forma con el rayo refractado, al desviarse, se denomina ángulo de refracción o ángulo indeterminado.

Ley de la reflexión

Cuando un rayo luminoso incide sobre la superficie de separación entre dos medios transparentes homogéneos e isótropos, una parte del rayo incidente se refleja y se queda en el medio de donde provino y la otra parte se transmite al otro medio.

El ángulo θ1 formado por el rayo incidente y la normal N a la superficie de separación en el punto de incidencia se denomina ángulo de incidencia; el ángulo formado por el rayo reflejado y la normal θ1' se denomina ángulo de reflexión (ver la figura). El rayo reflejado se encuentra en el mismo plano que el incidente y la normal en el punto de incidencia, pero por el lado opuesto a esta normal; el ángulo de reflexión θ1' es igual al ángulo de incidencia θ1:

θ1' = θ1,

que es la expresión de la ley de reflexión:

Un rayo luminoso se refleja en la superficie plana formando un ángulo de reflexión igual al de incidencia.

La ley de reflexión determina la dirección del rayo reflejado.

Basándose en las ecuaciones de Maxwell del electromagnetismo, se puede demostrar que en caso que n 1 < n2 el rayo reflejado sale en oposición de fase al rayo incidente, es decir, cambia su fase en π.

Trazo de rayos reflejados

En el algoritmo Ray Casting se determinan las superficies visibles en la escena que se quiere sintetizar trazando rayos desde el observador (cámara) hasta la escena a través del plano de la imagen. Se calculan las intersecciones del rayo con los diferentes objetos de la escena y aquella intersección que esté más cerca del observador determina cuál es el objeto visible.

El algoritmo de trazado de rayos extiende la idea de trazar los rayos para determinar las superficies visibles con un proceso de sombreado (cálculo de la intensidad del píxel) que tiene en cuenta efectos globales de iluminación como pueden ser reflexiones, refracciones o sombras arrojadas.

Para simular los efectos de reflexión y refracción se trazan rayos recursivamente desde el punto de intersección que se está sombreando dependiendo de las características del material del objeto intersecado.

Para simular las sombras arrojadas se lanzan rayos desde el punto de intersección hasta las fuentes de luz. Estos rayos se conocen con el nombre de rayos de sombra (shadow rays).

El algoritmo básico de trazado de rayos fue mejorado por Robert Cook (1985) para simular otros efectos en las imágenes mediante el muestreo estocástico usando un método de Montecarlo; entre estos efectos podemos citar el desenfoque por movimiento (blur motion), la profundidad de campo o el submuestreo para eliminar efectos de aliasing en la imagen resultante.

En la actualidad, el algoritmo de trazado de rayos es la base de otros algoritmos más complejos para síntesis de imágenes (mapeado de fotones, Metrópolis, entre otros) que son capaces de simular efectos de iluminación global complejos como la mezcla de colores (color blending) o las cáusticas.

Refracción de la luz

Ley de snell

La ley de Snell (también llamada ley de Snell-Descartes) es una fórmula utilizada para calcular el ángulo de refracción de la luz al atravesar la superficie de separación entre dos medios de propagación de la luz (o cualquier onda electromagnética) con índice de refracción distinto. El nombre proviene de su descubridor, el matemático holandés Willebrord Snel van Royen (1580-1626). La denominaron "Snell" debido a su apellido pero le pusieron dos "l" por su nombre Willebrord el cual lleva dos "l".

La misma afirma que la multiplicación del índice de refracción por el seno del ángulo de incidencia es constante para cualquier rayo de luz incidiendo sobre la superficie separatriz de dos medios. Aunque la ley de Snell fue formulada para explicar los fenómenos de refracción de la luz se puede aplicar a todo tipo de ondas atravesando una superficie de separación entre dos medios en los que la velocidad de propagación de la onda varíe.

Índice de refracción

El índice de refracción es una medida que determina la reducción de la velocidad de la luz al propagarse por un medio homogéneo. De forma más precisa, el índice de refracción es el cambio de la fase por unidad de longitud, esto es, elnúmero de onda en el medio ( ) será veces más grande que el número de onda en el vacío ( ).

Definición física

El índice de refracción (n) está definido como el cociente de la velocidad (c) de un fenómeno ondulatorio como luz o sonido en el de un medio de referencia respecto a la velocidad de fase(vp) en dicho medio:

Generalmente se utiliza la velocidad de la luz (c) en el vacíocomo medio de referencia para cualquier materia, aunque durante la historia se han utilizado otras referencias, como la velocidad de la luz en el aire. En el caso de la luz, es igual a:

Donde εr es la permitividad relativa del material, y μr es su permeabilidad electromagnética relativa. Para la mayoría de los materiales, μr es muy cercano a 1 en frecuencias ópticas, es decir, luz visible, por lo tanto, n es aproximadamente .

Reflexión interna total

En óptica la reflexión interna total es el fenómeno que se produce cuando un rayo de luz atraviesa un medio de índice de refracción n2 menor que el índice de refracción n1 en el que éste se encuentra, se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente.

Este fenómeno solo se produce para ángulos de incidencia superiores a un cierto valor crítico, θc. Para ángulos mayores la luz deja de atravesar la superficie y es reflejada internamente de manera total. La reflexión interna total solamente ocurre en rayos viajando de un medio de alto índice refractivo hacia medios de menor índice de refracción.

La reflexión interna total se utiliza en fibra óptica para conducir la luz a través de la fibra sin pérdidas de energía. En una fibra óptica el material interno tiene un índice de refracción más grande que el material que lo rodea. El ángulo de la incidencia de la luz es crítico para la base y su revestimiento y se produce una reflexión interna total que preserva la energía transportada por la fibra.

En aparatos de óptica se prefiere utilizar la reflexión total en lugar de espejos metalizados. Como ejemplo de utilización de la reflexión total en aparatos corrientes encontramos el pentaprisma de las cámaras fotográficas réflex y los Prisma de Porroo Schmidt-Pechan de los prismáticos.

La reflexión interna total es responsable de los destellos de luz que se observan en un diamante tallado.

Dispersión

La luz procedente de una estrella, conocida como luz blanca, es una superposición de luces de diferentes colores, las cuales presentan una longitud de onda y una frecuencia específicas. La dispersión de la luz es un fenómeno que se produce cuando un rayo de luz blanca atraviesa un medio transparente (por ejemplo un prisma) y se refracta, mostrando a la salida de éste los respectivos colores que la constituyen.

La dispersión tiene su origen en una disminución en la velocidad de propagación de la luz cuando atraviesa el medio. Debido a que el material absorbe y reemite la luz cuya frecuencia es cercana a la frecuencia de oscilación natural de los electrones que están presentes en él, ésta luz se propaga un poco más despacio en comparación a luz de frecuencias distintas. Estas variaciones en la velocidad de propagación dependen del índice de refracción del material y hacen que la luz, para frecuencias diferentes, se refracte de manera diferente. En el caso de una doble refracción (como sucede en el prisma) se distinguen entonces de manera organizada los colores que componen la luz blanca: la desviación es progresiva, siendo mayor

...

Descargar como (para miembros actualizados) txt (61 Kb)
Leer 39 páginas más »
Disponible sólo en Clubensayos.com