ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teoria Conocimiento

slayer338 de Enero de 2014

552 Palabras (3 Páginas)720 Visitas

Página 1 de 3

RESUMEN

El objetivo de esta monografía es ahondar en la geometría fractal, abordando un aspecto menos estudiado de este campo: el estudio de las áreas de figuras fractales formadas por curvas de longitud infinita que encierran un área finita.

Mi trabajo tiene como finalidad, en definitiva, encontrar expresiones generalizadas que permitan hallar de forma fácil y sencilla el área de figuras fractales que se construyen de una determinada manera, sin tener que realizar el laborioso proceso de cálculo que ello conllevaría.

Para ello realizo primero el cálculo del área de determinadas figuras fractales y, apoyándome en esto, hallo una expresión general.

Con la investigación también pretendo mostrar la interrelación existente entre distintas ramas de las matemáticas, ya que para el cálculo del área de figuras fractales debo correlacionar aspectos de la geometría fractal, la trigonometría y las progresiones geométricas.

Asimismo, de esta forma consigo expresar la importancia de dicha conexión en la consecución de resultados satisfactorios a determinados problemas matemáticos.

Al final he logrado encontrar las expresiones generales para el cálculo del área de estos objetos que, si bien son válidas sólo para un número limitado del infinito campo compuesto por las figuras fractales, podrían servir de base en futuros trabajos más profundos o proporcionar una herramienta que agilice los cálculos.

INTRODUCCIÓN

La geometría fractal es una de las ramas más bellas de las matemáticas. Este campo de estudio es relativamente moderno, ya que surgió propiamente en 1975 de la mano del matemático francés Benoit Mandelbrot y su ensayo Los objetos fractales: forma, azar y dimensión.

Sin embargo, muchos de sus objetos de estudio, de los denominados “fractales”, habían surgido y llamado la atención mucho antes.

Este es el caso de las curvas de Peano y Hilbert (propuestas a finales del siglo XIX por dichos matemáticos), que constituían ejemplos de curvas que recubrían todo el plano.

También es el caso de la curva de Koch, elemento fundamental de esta monografía, que fue planteada por el matemático suizo Helge von Koch en 1904 como ejemplo de una curva no derivable en ningún punto. Dicha curva se forma reemplazando un segmento inicial por otros de longitud la tercera parte de la siguiente forma, e iterando el proceso infinitas veces:

Ese mismo año la marca de cacao Droste lanzó al mercado un tipo de caja que entraría en la historia de las matemáticas y de los efectos ópticos.

En dicha caja aparecía una enfermera sujetando una caja idéntica, y en su interior otra enfermera sujetaba otra caja y así sucesivamente.

El efecto Droste, como se le llamó, motivó el estudio de estos objetos que se repiten a diferentes escalas, denominados hoy fractales.

A día de hoy, el concepto de fractal no está totalmente definido, pero las siguientes características de fácil comprensión se consideran comunes a todos los objetos fractales:

• Poseen una dimensión no entera.

• Están formados por estructuras que se repiten a diferentes escalas, es decir, son autosemejantes.

• Se obtienen mediante algoritmos recursivos simples.

Existen otras definiciones más complejas, pero en términos generales éstas se encuentran en todos los fractales.

En este trabajo voy a trabajar con

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com