APORTACIONES DE ALBERT EINSEIN
panagoji14 de Marzo de 2015
5.696 Palabras (23 Páginas)379 Visitas
.
APORTACIONES DE ALBERT EINSTEIN
En 1901 apareció el primer trabajo científico de Einstein: trataba de la atracción capilar.
Publicó dos trabajos en 1902 y 1903, sobre los fundamentos estadísticos de la termodinámica, corroborando experimentalmente que la temperatura de un cuerpo se debe a la agitación de sus moléculas, una teoría aún discutida en esa época.
En 1905 finalizó su doctorado presentando una tesis titulada Una nueva determinación de las dimensiones moleculares. Ese mismo año escribió cuatro artículos fundamentales sobre la física de pequeña y gran escala. En ellos explicaba el movimiento browniano, el efecto fotoeléctrico y desarrollaba la relatividad especial y la equivalencia masa-energía.
El trabajo de Einstein sobre el efecto fotoeléctrico le proporcionaría el Premio Nobel de física en 1921. Estos artículos fueron enviados a la revista "Annalen der Physik" y son conocidos generalmente como los artículos del "Annus Mirabilis" (del Latín: Año milagroso). La Unión internacional de física pura y aplicada junto con
El primero de sus artículos de 1905 se titulaba Un punto de vista heurístico sobre la producción y transformación de luz. En él Einstein proponía la idea de "quanto" de luz (ahora llamados fotones) y mostraba cómo se podía utilizar este concepto para explicar el efecto fotoeléctrico. La teoría de los cuantos de luz fue un fuerteindicio de la dualidad onda-corpúsculo y de que los sistemas físicos pueden mostrar tanto propiedades ondulatorias como corpusculares. Este artículo constituyó uno de los pilares básicos de la mecánica cuántica
Una explicación completa del efecto fotoeléctrico solamente pudo ser elaborada cuando la teoría cuántica estuvo más avanzada. Por este trabajo, y por sus contribuciones a la física teórica, Einstein recibió el Premio Nobel de Física de 1921.
El segundo artículo, titulado Sobre el movimiento requerido por la teoría cinética molecular del calor de pequeñas partículas suspendidas en un líquido estacionario, cubría sus estudios sobre el movimiento browniano. El artículo sobre el movimiento browniano, el cuarto en grado de importancia, está estrechamente relacionado, con el artículo sobre teoría molecular. Se trata de una pieza de mecánica estadística muy elaborada, destacable por el hecho que Einstein no había oído hablar de las mediciones de Brown de la década de 1820 hasta finales de ese mismo año (1905); así pues, escribió este artículo titulándolo "Sobre la teoría del movimiento browniano"41
El artículo explicaba el fenómeno haciendo uso de las estadísticas del movimiento térmico de los átomos individuales que forman un fluido. El movimiento browniano había desconcertado a la comunidad científica desde su descubrimiento unas décadas atrás. La explicación de Einstein proporcionaba una evidencia experimental incontestable sobre la existencia real de los átomos. El artículotambién aportaba un fuerte impulso a la mecánica estadística y a la teoría cinética de los fluidos, dos campos que en aquella época permanecían controvertidos.
Antes de este trabajo los átomos se consideraban un concepto útil en física y química, pero al contrario de lo que cuenta la leyenda, la mayoría de los físicos contemporáneos ya creían en la teoría atómica y en la mecánica estadística desarrollada por Boltzmann, Maxwelly Gibbs; además ya se habían hecho estimaciones bastante buenas de los radios del núcleo y del número de Avogadro.
El artículo de Einstein sobre el movimiento atómico entregaba a los experimentalistas un método sencillo para contar átomos mirando a través de unmicroscopio ordinario.41
El tercer artículo de Einstein de ese año se titulaba Zur Elektrodynamik bewegter Körper ("Sobre la electrodinámica de cuerpos en movimiento"). En este artículo Einstein introducía la teoría de la relatividad especial estudiando el movimiento de los cuerpos y elelectromagnetismo en ausencia de la fuerza de interacción gravitatoria.42
La relatividad especial resolvía los problemas abiertos por el experimento de Michelson y Morley en el que se había demostrado que las ondas electromagnéticas que forman la luz se movían en ausencia de un medio. La velocidad de la luz es, porlo tanto, constante y no relativa al movimiento. Ya en 1894 George Fitzgerald había estudiado esta cuestión demostrando que el experimento de Michelson y Morley podía ser explicado si los cuerpos se contraen en la dirección de su movimiento. De hecho, algunas de las ecuaciones fundamentales del artículo de Einstein habían sido introducidas anteriormente (1903) por Hendrik Lorentz, físico holandés, dando forma matemática a la conjetura de Fitzgerald.43
Esta famosa publicación está cuestionada como trabajo original de Einstein, debido a que en ella omitió citar toda referencia a las ideas o conceptos desarrollados por estos autores así como los trabajos de Poincaré. En realidad Einstein desarrollaba su teoría de una manera totalmente diferente a estos autores deduciendo hechos experimentales a partir de principios fundamentales y no dando una explicación fenomenológica a observaciones desconcertantes. El mérito de Einstein estaba por lo tanto en explicar lo sucedido en el experimento de Michelson y Morley como consecuencia final de una teoría completa y elegante basada en principios fundamentales y no como una explicación ad-hoc o fenomenológica de un fenómeno observado.42
Su razonamiento se basó en dos axiomas simples: En el primero reformuló el principio de simultaneidad, introducido por Galileo siglos antes, por el que las leyes de la física deben ser invariantes para todos los observadores que se mueven a velocidades constantes entre ellos, y el segundo, que la velocidad de la luz es constante paracualquier observador. Este segundo axioma, revolucionario, va más allá de las consecuencias previstas por Lorentz o Poincaré que simplemente relataban un mecanismo para explicar el acortamiento de uno de los brazos del experimento de Michelson y Morley. Este postulado implica que si un destello de luz se lanza al cruzarse dos observadores en movimiento relativo, ambos verán alejarse la luz produciendo un círculo perfecto con cada uno de ellos en el centro. Si a ambos lados de los observadores se pusiera un detector, ninguno de los observadores se pondría de acuerdo en qué detector se activó primero (se pierden los conceptos de tiempo absoluto y simultaneidad).44 La teoría recibió el nombre de "teoría especial de la relatividad" o "teoría restringida de la relatividad" para distinguirla de la teoría de la relatividad general, que fue introducida por Einstein en 1915 y en la que se consideran los efectos de la gravedad y la aceleración.
El cuarto artículo de aquel año se titulaba Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig y mostraba una deducción de la fórmula de la relatividad que relaciona masa y energía. En este artículo se exponía que "la variación de masa de un objeto que emite una energía L, es: donde V era la notación de la velocidad de la luz usada por Einstein en 1905.
Esta fórmula implica que la energía E de un cuerpo en reposo es igual a su masa m multiplicada por la velocidad de la luz al cuadrado:
Muestra cómo una partícula con masa posee un tipo de energía, "energía en reposo", distinta de las clásicas energía cinética y energía potencial. La relación masa–energía se utiliza comúnmente para explicar cómo se produce la energía nuclear; midiendo la masa de núcleos atómicos y dividiendo por el número atómico se puede calcular la energía de enlace atrapada en los núcleos atómicos. Paralelamente, la cantidad de energía producida en la fisión de un núcleo atómico se calcula como la diferencia de masa entre el núcleo inicial y los productos de su desintegración, multiplicada por la velocidad de la luz al cuadrado.
En noviembre de 1915 Einstein presentó una serie de conferencias en la Academia Prusiana de las Ciencias en las que describió la teoría de la relatividad general. La última de estas charlas concluyó con la presentación de la ecuación que reemplaza a la ley de gravedad de Newton. En esta teoría todos los observadores son considerados equivalentes y no únicamente aquellos que se mueven con una velocidad uniforme. La gravedad no es ya una fuerza o acción a distancia, como era en la gravedad newtoniana, sino una consecuencia de la curvatura del espacio-tiempo. La teoría proporcionaba las bases para el estudio de la cosmología y permitía comprender las características esenciales del Universo, muchas de las cuales no serían descubiertas sino con posterioridad a la muerte de Einstein.46
La relatividad general fue obtenida por Einstein a partir derazonamientos matemáticos, experimentos hipotéticos (Gedanken experiment) y rigurosa deducción matemática sin contar realmente con una base experimental. El principio fundamental de la teoría era el denominado principio de equivalencia. A pesar de la abstracción matemática de la teoría, las ecuaciones permitían deducir fenómenos comprobables. El 29 de mayo de 1919 Arthur Eddington fue capaz de medir, durante un eclipse, la desviación de la luz de una estrella al pasar cerca del Sol, una de las predicciones de la relatividad general. Cuando se hizo pública esta confirmación la fama de Einstein se incrementó enormemente y se consideró un paso revolucionario en la física. Desde entonces la teoría se ha verificado en todos y cada
...